Olive Waste Valorization for Food Biotechnological Applications (Mini-Review)

Authors

  • Ben amar Cheba

Abstract

Due to its richness in nutrients, added-value ingredients and bioactive compounds, olive agro- wastes they should not be considered as “wastes”, but “raw material” pave the way for food, cosmetic, and pharmaceutical industries. In the food sector, these biowastes offer best suited ingredients for manufacturing valuable compounds such us biosurfactants, mushroom, enzymes, olive leaf tea, vinegar, polysaccharides, vitamins, antioxidants, flavor compounds, and other unique functional properties. Furthermore, olive wastes find some distinctive applications including water purification, nutritional functionality enhancement, sensory quality improvement, food additive, food shelf-life extension, active packaging and food preservation. This review summarizes all bioactive ingredients, compounds and products issued from olive wastes and discusses their valorization for food biotechnological applications.

References

Cavalheiro, C. V., Picoloto, R. S., Cichoski, A. J., Wagner, R., deMenezes, C. R., Zepka, L. Q., Barin, J. S. (2015). Olive leaves offer more than phenolic compounds— Fatty acids and mineral composition of varieties from Southern Brazil. Industrial Crops and Products,71, 122–127.

Bhatnagar, A., Kaczala, F., Hogland, W., Marques, M., Paraskeva, C., Papadakis, V., & Sillanpää, M. (2014). Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control—A review. Environmental Science and Pollution Research, 21(1), 268–298.

Vlyssides AG, Loizides M, Karlis PK. 2004. Integrated strategic approach for reusing olive oil extraction.Journal of Cleaner Production. 12, 603-611.

Aydinoglu, T., Sargin, S., 2013. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst. Eng. 36, 215–222

El-Hamouz, A. Hilal, Hikmat, Nassar, Nashaat, Mardawi, Zahi. 2007. Solid olive waste in environmental cleanup: Oil recovery and carbon production for water purification. Journal of environmental management. 4: 83- 92 DO - 10.1016/j.jenvman.2006.05.003 -

N. Spahis, A. Addoun, H. Mahmoudi, N. Ghaffour , Purification of water by activated carbon prepared from olive stones, Desalination, Volume 222, Issues 1–3, 1 March 2008, Pages 519-527

Hanaa Zbakha, Abdelilah El Abbassib. (2012) Potential use of olive mill wastewater in the preparation of functional beverages: A review. Journal of functional foods s 4: 53 –65

A. N. Sudjana, C. D'Orazio, V. Ryan et al., “Antimicrobial activity of commercial Olea europaea (olive) leaf extract,” International Journal of Antimicrobial Agents, vol. 33, no. 5, pp. 461–463, 2009

Antonella De Leonardis, Vincenzo Macciola, Massimo Iorizzo, Silvia Jane Lombardi, Emanuele Marconi.Effective assay for olive vinegar production from olive oil mill wastewaters,Food Chemistry, Volume 240, 1 February 2018, Pages 437-440

Conde E, Cara C, Moure A, Ruiz E, Castro E, Domínguez H, 2009. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chem 114: 806-812

Difonzo, G., Pasqualone, A., Silletti, R., (...), Paradiso, V.M., Caponio, F.2018. Use of olive leaf extract to reduce lipid oxidation of baked snacks. Food Research International .108, pp. 48-56.

Guinda A, Castellano JM, Santos-Lozano JM, DelgadoHervás T, Gutiérrez-Adánez P and Rada M, Determination of major bioactive compound from olive leaf. LWT - Food Sci Technol 64:431–438 (2015).

Vergani L, Vecchione G, Baldini F, Voci A, Ferrari PF, Aliakbarian B et al., Antioxidant and hepatoprotective potentials of phenolic compounds from olive pomace. Chem Eng Trans 49:475–480 (2016).

Stavroulias S and Panayiotou C, (2005). Determination of optimum conditions for the extraction of squalene from olive pomace with supercritical CO2. Chem Biochem Eng Q 19:373–381

Avni, S., Ezove, N., Hanani, H., (...), Schwartz, B., Danay, O. 2017. Olive mill waste enhances α-glucan content in the edible mushroom Pleurotus eryngii. International Journal of Molecular Sciences, 18(7), 1564

Mansour-Benamar, M., Savoie, J.-M., Chavant, L.2013. Valorization of solid olive mill wastes by cultivation of a local strain of edible mushrooms. Comptes Rendus – Biologies, 336(8), pp. 407-415

Atila, F., Tüzel, Y., Faz Cano, A., Fernandez, J.A.2017. Effect of different lignocellulosic wastes on Hericium americanum yield and nutritional characteristics. Journal of the Science of Food and Agriculture.97 (2), pp. 606-612

Koutrotsios, G., Larou, E., Mountzouris, K.C., Zervakis, G.I. 2016. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus. Applied Biochemistry and Biotechnology,180(2), pp. 195-209

Ntougias, S., Baldrian, P., Ehaliotis, C., (...), Merhautová, V., Zervakis, G.I. 2015.Olive mill wastewater biodegradation potential of white-rot fungi - Mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresource Technology, 189, pp. 121130

Zerva, A., Papaspyridi, L.-M., Christakopoulos, P., Topakas, E.2017 Valorization of Olive Mill Wastewater for the Production of β-glucans from Selected Basidiomycetes, Waste and Biomass Valorization ,8(5), pp. 1721-1731

Crognale S, Federici F, Petruccioli M. 2003. BetaGlucan production by Botryosphaeria rhodina on undiluted olive-mill wastewaters. Biotechnology Letters 25, 2013-2015

Cardoso SM, Coimbra MA, da Silva JAL. 2003. Calcium mediated gelation of an olive pomace pectic extract. Carbohydrate Polymers 52, 125-133

Ramos-Cormenzana, A., Monteoli-Vasanchez, A., & Lopez, M. J. (1995). Bioremediation of alpechin. Intl Biodet Biodeg, 35, 249–268.

M.J. López, A. Ramos-Cormenzana, Xanthan production from olive-mill wastewaters, International Biodeterioration and Biodegradation, 38 (3/4) (1996), pp. 263-270.

Tomati U, Belardinelli M, Galli E, Iori V, Capitani D,Mannina L, Viel S, Segre A. 2004. NMR characterization of the polysaccharidic fraction from Lentinula edodes grown on olive mill wastewaters. Carbohydrate Research 339, 1129-1134.

Nadour, M., Laroche, C., Pierre, G., (...), Moulti-Mati, F., Michaud, P.2015. Structural Characterization and Biological Activities of Polysaccharides from Olive Mill Wastewater.Applied Biochemistry and Biotechnology, 177(2), pp. 431-445

Cara C, Ruiz E, Carvalherio F, Moura P, Ballesteros I, Castro E, Girio F, 2012. Production, purification and characterization of oligosaccharides from olive tree pruning autohydrolysis. Ind Crops Prod 40: 225-231.

Garcia-Granados A, Martinez L. Procedimiento para obtener manitol y productos derivados a partir de alpeorujo procedente del procesado de las aceitunas segun el procedimiento de dos fases. Patent N° ES2060549 (16.11.1994).

García, J.F., Sánchez, S., Bravo, V., Cuevas, M., Rigal, L., Gaset, A., 2011. Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. olzforschung 65, 59–65.

Alsafadi, D., Al-Mashaqbeh, O.2017. A one-stage cultivation process for the production of poly-3(hydroxybutyrate-co-hydroxy valerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnology .34, pp. 47-53

Pozo C, Martinez-Toledo MV, Rodelas B, GonzalezLopez J. 2002. Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon source. J. Biotechnol. 97,125-131.

Ramachandran S, Patel AK, Nampoothiri KM, Chandran S.Szakacs G, Soccol CR, Pandey A. 2004. Alpha amylase from a fungal culture grown on oil cakes and its propertie.s Brazilian Arch. Biol. Technol. 47, 309-317.

Moftah, O.A.S., Grbavčić, S., Žuža, M., (...), Bezbradica, D., Knezevic-Jugovic, Z.2012. Adding value to the oil cake as a waste from oil processing industry: Production of lipase and protease by Candida utilis in solidstate fermentation. Applied Biochemistry and Biotechnology, 166(2), pp. 348-364

Vioque, J., Clemente, A., Sáchez-Vioque, R., Pedroche, J., Millán, F.2000. Effect of Alcalase TM on olive pomace protein extraction. JAOCS, Journal of the American Oil Chemists' Society.77 (2), pp. 181-185

Guneser, O., Demirkol, A., Yuceer, Y.K., (...), Hosoglu, M.I., Elibol, M.2017. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Brazilian Journal of Microbiology.48 (2), pp. 275-285

Sarris, D., Stoforos, N.G., Mallouchos, A., (...), Aggelis, G., Papanikolaou, S. 2017. Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and nonaseptic conditions. Engineering in Life Sciences .17(6), pp. 695-709.

Fernández-Bolaños Guzmán, J., de Roos, B.2012 Alperujo extract, hydroxytyrosol, and 3,4dihydroxyphenylglycol are bioavailable and have antioxidant properties in vitamin E-deficient rats-a proteomics and network analysis approach. Molecular Nutrition and Food Research ,56(7), pp. 1137-1147

Eroglu, E.2010. Natural antioxidants of olive oil and their recovery from olive mill wastewaters (Book Chapter) Olive Oil and Health pp. 443-458.

Munoz S. Procedimiento para la production de vitamina B12 a partir de residuos contaminantes de la industria de la aceituna. Patent N° ES2122927 (16.12.1998).

Fernandes, L.R., Gomes, A.C., Lopes, A., Albuquerque, A., Simões, R.M. 2016. Sugar and volatile fatty acids dynamic during anaerobic treatment of olive mill wastewater. Environmental Technology (United Kingdom) 37(8), pp. 997-1007

Martin M, Ferrer E, Sanz J, Gibello A. Process for the biodegradation of aromatic compounds and synthesis of pigments and colorants, alkaloids and polymers, with the use of the recombinant strain Escherichi coli P260. Patent N° WO98/04679 (5.02.1998).

Roberta., Ortenzi, Murizio, Servili, Gianluca, Veneziani, Raffaella, Branciar. i Antimicrobial efficacy of a polyphenolic extract from olive oil by-product against “Fior di latte” cheese spoilage bacteria. International Journal of Food Microbiology. Volume 295, 16 April 2019, Pages 4953

Marta Navarro, Francisco J. Morales, Effect of hydroxytyrosol and olive leaf extract on 1,2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation endproducts in a biscuit model, Food Chemistry, Volume 217, 15 February 2017, Pages 602-609.

Adeleh Mohammadi, Seid Mahdi Jafari, Afshin Faridi Esfanjani, Sahar Akhavan. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, Volume 190, 1 January 2016, Pages 513-519.

Maria J. Ruiz-Moreno, Rafaela Raposo, Jose M. Moreno-Rojas, Pilar Zafrilla, Emma Cantos-Villar. Efficacy of olive oil mill extract in replacing sulfur dioxide in wine model, LWT - Food Science and Technology, Volume 61, Issue 1, April 2015, Pages 117-123,

Delgado-Adámez, J.; Bote, E.; Parra-Testal, V.; Martín, M. J.; Ramírez, R. Effect of the Olive Leaf Extracts In Vitro and in Active Packaging of Sliced Iberian Pork Loin. Packaging Technology & Science. Dec2016, Vol. 29 Issue 12, p649-660.

Tainara de Moraes Crizel, Alessandro de Oliveira Rios, Vítor D. Alves, Narcisa Bandarra, Simone Hickmann Flôres.

Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids, Volume 74, January 2018, Pages 139-150.

Downloads

Published

2019-05-01

How to Cite

amar Cheba , B. . (2019). Olive Waste Valorization for Food Biotechnological Applications (Mini-Review). WAS Science Nature (WASSN) ISSN: 2766-7715, 2(1). Retrieved from https://worldascience.org/journals/index.php/wassn/article/view/6

Issue

Section

Environmental Sciences