Dr Nematode-symbiotic bacterial toxin complexes as an alternative larvicidal bioinsecticide agent against Culex pipiens (Diptera: Culicidae)
Keywords:
Entomopathogenic bacteria, Xenorhabdus. Photorhabdus, Culex sp., Biocontrol, SDS-PAGEAbstract
Culex species are major vectors for several serious illnesses, where they are responsible for spreading of viral diseases. Gram-negative symbiotic bacteria, Xenorhabdus indica and Photorhabdus luminescens laumondii are linked with nematode parasites that are very dangerous to insect larvae. In the current investigation, anion exchange chromatography was used to partially purify X. indica and P. luminescens laumondii protein toxin complexes, crude and fractions of them were tested for their insecticidal efficacy against Culex pipiens late third-instar larvae, in vitro at varying concentrations. The protein toxin complexes of two bacterial species were analyzed using SDS–Polyacrylamide Gel Electrophoresis. Ten bands with molecular weights from 281 to 27.4 kDa were found in the bound fraction. In comparison, seven bands with molecular weights between 315 and 58 kDa were found in the unbound fraction when analyzing P. luminescens laumondii crude toxin complexes. The molecular weight distribution of a crude X. indica toxin complex showed 16 bands, from 315 to 17 kDa. All nine bands, with molecular weights ranging from 315 to 30 kDa, were found in the bound fraction, whereas only four bands, with molecular weights ranging from 93 to 17 kDa, were found in the unbound fraction. The LC50 values for the crude, unbound, and bound toxin of P. luminescens laumondii were 3142.25, 28.97 and 39.63 mg/L, respectively, whereas those values for X. indica were 256.52, 294.22 and 443.03 mg/L, respectively. The present results also, revealed that P. luminescens (HP88) fractions had a significantly higher larval growth inhibition activity than X. indica (Ab) fractions. In conclusion, this work introduces a largely purified toxin from P. luminescens laumondii that may be used in the management of Culex sp. and, as a result, aid in the integrated pest management (IPM) program for mosquito and subsequently for these viral diseases.
References
References
Calisher, C.H. (1994). Medically important arboviruses of the United States and Canada. Clin Microbiol Rev 7:89–116. DOI: 10.1128/CMR.7.1.89
Kramer, L., Ebel, G. (2003). Dynamics of flavivirus infection in mosquitoes. Adv. Virus Res. 60:187–232. DOI: 10.1016/s0065-3527(03)60006-0
Farajollahi, A., Fonseca, D.M., Kramer, L.D., Kilpatrick, M.A. (2011). "Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 11:1577-85. DOI:10.1016/j.meegid.2011.08.013
Hayes, E.B., Komar, N., Nasci, R.S., Montgomery, S.P., O’Leary, D.R., Campbell, G.L. (2005). Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11:1167–1173. Doi: 10.3201/eid1108.050289a
Fukruksa, C., Yimthin, T., Suwannaroj, M., Muangpat, P., Tandhavanant, S., Thanwisai, A., et al. (2017). Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasit Vectors 10:440. https://doi.org/10.1186/s13071-017-2383-2
Kim, I.H., Aryal, S.K., Aghai, D.T., Casanova Torres, Á.M., Hillman, K., Kozuch, M.P., et al. (2017). The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genomics 18:927. https://doi.org/10.1186/s12864-017-4311-4
da Silva, O.S., Prado, G.R., da Silva, J.L., Silva, C.E., da Costa, M., Heermann, R. (2013). Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae). Parasitol Res 112:2891-2896. DOI: 10.1007/s00436-013-3460-x
Boemare, N., Thaler, J.O., Lanois, A. (1997). Simple bacteriological tests for phenotypic characterization of Xenorhabdus and Photorhabdus phase variants. Symbiosis 22:167–175. http://hdl.handle.net/10222/77517
Forst, S., Dowds, B., Boemare, N., Stackebrandt, E. (1997). Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Ann Rev Microbiol 51:47–72. DOI: 10.1146/annurev.micro.51.1.47
Lang, A.E., Schmidt, G., Sheets, J.J., Aktories, K. (2011). Targeting of the actin cytoskeleton by insecticidal toxins from Photorhabdus luminescens. Naunyn Schmiedebergs Arch Pharmacol 383:227-235. DOI: 10.1007/s00210-010-0579-5
Zhu, H., Grewal, P.S., Reding, M.E. (2011). Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests. Appl Eng Agric 27:317–324. DOI: 10.13031/2013.37065
da Silva, L.R.J., Undurraga, S.F., Eugênio, S.C., da Costa, M., Heermann, R., da Silva, S.O. (2017). Larvicidal and growth-inhibitory activity of entomopathogenic bacteria culture fluids against Aedes aegypti (Diptera: Culicidae). J Econ Entomol 110:378-385. DOI: 10.1093/jee/tow224
Park, Y., Kyo-Jung, J., Kim, Y. (2016). A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila -cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae). J Econ Entomol 109:1086–1093. DOI: 10.1093/jee/tow063
Yooyangket, T., Muangpat, P., Polseela, R., Tandhavanant, S., Thanwisai, A., Vitta, A. (2018). Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS ONE 13:e0195681. DOI: 10.1371/journal.pone.0195681
Chaston, J.M., Suen, G., Tucker, S.L., Andersen, A.W., Bhasin, A., Bode, E., et al. (2011). The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent lifestyles from divergent genomes. PLoS ONE 6:e27909. https://doi.org/10.1371/journal.pone.0027909
Dillman, A.R., Guillermin, M.L., Lee, J.H., Kim, B., Sternberg, P.W., Hallem, E.A. (2012). Olfaction shapes host parasite interactions in parasitic nematodes. Proc Natl Acad Sci USA 109:E2324–2333. https://doi.org/10.1073/pnas.1211436109
Bode, H.B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230. DOI: 10.1016/j.cbpa.2009.02.037
Kaya, H.K., Gaugler, R. (1993). Entomopathogenic nematodes. Annu Rev Entomol 38:181–206. http://dx.doi.org/10.1146/annurev.en.38.010193.001145
Gulcu, B., Cimen, H., Raja, R.K., Hazir, S. (2017). Entomopathogenic nematodes and their mutualistic bacteria: their ecology and application as microbial control agents. Biopestic Int 13:79–112.
Park, Y., Kim, Y. (2000). Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J Insect Physiol 46:1469–1476. DOI: 10.1016/s0022-1910(00)00071-8
Eom, S., Park, Y., Kim, Y. (2014). Sequential immunosuppressive activities of bacte rial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila. J Microbiol 52:161–168. https://doi.org/10.1007/s12275-014-3251-9
Sheets, J.J., Hey, T.D., Fencil, K.J., Burton, S.L., Ni, W., Lang, A.E., Benz, R., Aktories, K. (2011). Insecticidal toxin complex proteins from Xenorhabdus nematophilus: structure and pore formation. J Biol Chem 286:22742-22749. DOI: 10.1074/jbc.M111.227009
Bowen, D.J., Ensign, J.C. (1998). Purification and characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol 64:3029–3035. DOI: 10.1128/aem.64.8.3029-3035.1998
Bowen, D., Rocheleau, T.A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R., Ffrench-Constant, R.H. (2011). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129-2132. DOI: 10.1126/science.280.5372.2129
Blackburn, M., Golubeva, E., Bowen, D., Ffrench-Constant, R.H. (1998). A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Appl Environ Microbiol 64:3036–3041. DOI: 10.1128/aem.64.8.3036-3041.1998
Morgan, J.A., Sergeant, M., Ellis, D., Ousley, M., Jarrett, P. (2001). Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67:2062–2069. Doi: 10.1128/AEM.67.5.2062-2069.2001
Mohamed, M.A., Coppel, H.C. (1983). Mass rearing of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae), for small-scale laboratory studies. Great Lakes Entomol 16:139–141. DOI: https://doi.org/10.22543/0090-0222.1476
Akhurst, R.J. (1982). Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061-3065. DOI: 10.1099/00221287-128-12-3061
Cabral, C.M., Cherqui, A., Pereira, A., Simoes, N. (2004). Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Applied and environmental microbiology, 70(7), 3831-3838. doi: 10.1128/AEM.70.7.3831-3838.2004
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75. PMID: 14907713
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
Biostat ver. (2.1) (2011). Computer program for probit analysis.
Statistical Analysis System (SAS) (2002). SAS/STAT User’s Guide. Version 8, 6th Edition, SAS institute Inc., Cary, North Carolina, U.S.A.
World Health Organization (WHO) (2007). weekly health organization record. Geneva: World Health Organization 82:361-380.
Blázquez, A.B., Martín-Acebes, M.A., Saiz, J.C. (2016). Inhibition of West Nile Virus Multiplication in Cell Culture by Anti-Parkinsonian Drugs. Front Microbiol 7:296. https://doi.org/10.3389/fmicb.2016.00296
Mahar, A.N., Munir, M., Mahar, A.Q. (2004). Studies of different application methods of Xenorhabdus and Photorhabdus cells and their toxin in broth solution to control locust (Schistocerca gregaria). Asian J Plant Sci 3:690–695. DOI:10.3923/ajps.2004.690.695
Dudney, R.A. (1997). Use of Xenorhabdus Nematophilus Im/l and 1906/1 for Fire Ant Control. US Patent No. 5616318. http://www.freepatentsonline.com/5616318.html
Elawad, S.A., Gowen, S.R., Hague, N.G.M. (1999). Efficacy of bacterial symbionts from entomopathogenic nematodes against the beet army worm (Spodoptera exigua) Test of Agrochemicals and Cultivars No. 20, Ann Appl Biol (Supplement) 134:66–67.
Owuama, C. (2001). Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World Journal of Microbiology and Biotechnology 17:505–515. https://doi.org/10.1023/A:1011916021378
Ffrench-Constant, R.H., Bowen, D.J. (2000). Novel insecticidal toxins from nematode symbiotic bacteria. Cell Mol Life Sci 57:828–833. DOI: 10.1007/s000180050044
Ffrench-Constant, R.H., Dowling, A., Waterfield, N.R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436- 451. DOI: 10.1016/j.toxicon.2006.11.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 WAS Science Nature (WASSN) ISSN: 2766-7715

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.