NOTE ON (A,m)-ISOMETRIC OPERATORS IN SEMI-HILBERTIAN SPACES
NOTE ON (A,m)-ISOMETRIC OPERATORS IN SEMI-HILBERTIAN SPACES
Keywords:
Hilbert space; Hilbert space operator; isometric operators.Abstract
Given a bounded
References
Alger, J., & Stankus, M. (1995). m-isometric transformations of Hilbert space, I. Mathematics, 23,
Alger, J., & Stankus, M. (1996). m-Isometric Transformations of Hilbert Space, III. Journal of
Integral Equations and Operator Theory, 24(4), 379, 379-421.
Ando, T. (1972). Operators with a norm condition. Acta Sci. Math. Szeged, 33, 169-178.
Arias, M. L., Corach, G., & Gonzalez, M. C. (2008). Partial isometries in semi-Hilbertian
spaces. Linear Algebra and its Applications, 428(7), 1460-1475.
Baklouti, H., Feki, K., & Ould Ahmed Mahmoud, S. A. (2018). Joint normality of operators in
semi-Hilbertian spaces. Linear and Multilinear Algebra, 68(4), 845-866.
Baklouti, H., Feki, K., & Ahmed, O. A. M. S. (2018). Joint numerical ranges of operators in
semi-Hilbertian spaces. Linear Algebra and its Applications, 555, 266-284.
Bayart, F. (2011). m‐isometries on Banach spaces. Mathematische Nachrichten, 284(17‐18),
-2147.
Bermúdez, T., Mendoza, C. D., & Martinón, A. (2012). Powers of m-isometries. Studia
Math, 208(3), 249-255.
Bermúdez, T., Martinon, A., & Noda, J. A. (2013). Products of m-isometries. Linear Algebra and its
Applications, 438(1), 80-86.
Botelho, F. (2010). On the existence of n-isometries on l p-spaces, Acta Sci. Math. Szeged, 76,(1-2),
–192.
Duggal, B. P. (2000). Tensor products of operators—strong stability and
p-hyponormality. Glasgow Mathematical Journal, 42(3), 371-381.
Duggal, B. P. (2012). Tensor product of n-isometries. Linear algebra and its applications, 437(1),
-318.
Duggal, B. P. (2012). Tensor product of n-isometries II. Functional Analysis, Approximation and
Computation, 4, 27-32.
Gonzalez, M.C. (2011). Operator norm inequalities in semi-Hilbertian spaces. Linear Algebra
and its Applications, 434, 370-378.
Hoffman, P., Mackey, M. & ´O Searc´oid, M. (2011). On the second parameter of an (m;
p)-isometry. Integral Equat. Oper. Th., 71, 389–405.
Hou, J.C. (1993). On the tensor products of operators. Acta Math. Sinica (N.S.), 9(2), 195 - 202.
Patel, S. M. (2002). 2-Isometric Operators. Glasnik Math., 37, 143–147.
Sid’Ahmed, O.A.M. & Saddi, A. (2012). A-m-Isometric operators in semi-Hilbertian spaces.
Linear Algebra and its Applications, 436,3930-3942.
Sid Ahmed, O.A.M. (2010). m-isometric operators on Banach spaces. Asian-European J. Math., 3,
–19.
Richter, S. A. (1991). Representation theorem for cyclic analytic two-isometries. Trans. Amer.
Math. Soc., 328, 325-349.
Shimorin, S. M. (2001). Wold-type decompositions and wandering subspaces for operators
close to isometries. J. Reine Angew. Math., 531, 147-189.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 WAS Science Nature (WASSN) ISSN: 2766-7715
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.