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Abstract: A Multi-sink Wireless Sensor Networks (WSNs) are being used in many applications due 

to its significant advantages over the single sink. One of the major applications in WSNs is object 

tracking due to its wide real-life applications such as wildlife animal monitoring and military area 

intrusion detection. Many of the prior researches on object tracking in WSNs have focused on 

tracking the location of objects accurately but few researches on data reporting. In this work, we 

propose an efficient data reporting method for object tracking in multi-sink WSNs. Since the energy 

resources are limited in the sensor nodes, full utilization of resources with minimum energy 

remains the main consideration when a WSN application is designed. Moreover, Network 

reliability has become an essential aspect that should be considered beside energy conservation to 

guarantee the quality of network. Consequentially, this paper aims to achieve both minimum 

energy consumption in reporting operation and balanced energy consumption among sensor 

nodes for WSN lifetime extension. Furthermore, data reliability is considered in our model where 

the sensed data can reach the sink node in a more reliable way.  This work first formulates the 

problem as 0/1 Integer Linear Programming (ILP) problem, proposes a new scheme for selecting 

the optimal sink for data transmission and then proposes a swarm intelligence for solving the 

optimization problem. Through simulation, the performance of the proposed approach is 

evaluated and analyzed compared with the previous work which is related to our topic such as 

DTAR, NBPR, and MSDDGR protocols. 

Keywords: object tracking; swarm intelligence;  multi-sink, reliability; energy balance; traffic 

aware. 

 

1. Introduction 

WSNs are ad-hoc networks that have a wide variety of promising applications. A Wireless 

sensor network (WSN) is composed of large number of tiny, inexpensive, and battery operated 

sensor nodes which densely deployed over a geographical area. Such nodes are essential for 

monitoring physical or environmental conditions such as temperature, motion, and relative 

humidity, perform simple computation, and communicate via wireless multi-hop transmission 

technique to report the collected data to one or more sink nodes [1]. 

It is well known that the nodes in WSN have severe resource limitations such as energy, 

bandwidth, and storage resources. Energy is an extremely crucial resource because it not only 

determines the sensor nodes lifetime, but the network lifetime as well [2]. In WSNs, the major source 

of energy consumption is communication [3]. Consequently, most of the existing routing techniques 

in WSN attempt to find the shortest path to the sink to minimize energy consumption. As a result, 
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highly unbalanced energy consumption which leads to energy holes around the sink and 

significantly minimize network lifetime [4-5]. Therefore, designing energy-balanced routing 

technique plays a crucial role in WSNs [4,5].     

One of the major technical challenges for some critical applications of WSNs is to provide a 

reliable data transmission in dynamic and harsh environment [6-8]. In harsh environment, the 

dynamic nature of wireless channel conditions or unexpected node failure may cause a loss of 

important information [9]. This prevents the sensor network from achieving its primary purpose 

which is data transfer and the network resources will be wasted due to the retransmission of the lost 

packets. Therefore, routing techniques should give priority to reliable transmission.  At the same 

time, it is critical to reduce packet loss in WSNs which will improve the network throughput and 

energy-efficiency. 

Congestion control is one of the most essential issues in WSNs [10,11]. In event-driven WSNs 

such as those used in object tracking application, nodes normally operate under low or idle load 

states and suddenly become active and transmit data packet when event occur. As a result, a part of 

the network becomes overloaded and often leads to congestion. Due to limited storage memory on 

sensor nodes, congestion in WSNs can lead to buffer overflow. Therefore, such a buffer overflow 

problem may result in loss of important information and thus more energy consumption and delay 

due to the retransmission of the lost packets. Consequently, it is a highly needed to consider buffer 

space when designing routing protocols in WSNs to spread data traffic away from the congested 

areas [12,13]. 

Many researches focus on the design of routing protocols in WSN, single sink is often chosen. 

However, WSNs with single sink still suffer from many problems. The main problem is that the 

energy consumption rate of the sensor nodes close to the sink is much higher than the remote one. 

Therefore, this leads to unbalanced energy consumption which result in energy holes near the sink 

and significant network lifetime reduction. Moreover, the invalidation of the sink node will 

inevitably lead to the failure of the whole network [14]. Consequentially, it may be infeasible in 

practice to use WSN with single sink. So, the WSN with multiple sink nodes has been proposed 

[15,16]. 

Multi-sink topology has significant advantages over single sink. Firstly, multi-sink usage can 

balance the energy consumption and effectively solve the energy hole problem which will prolong 

the network lifetime.  Secondly, it more reliable than single sink, in multi-sink if any sink node 

failures due to any reason the data will be transmitted through other sinks [17]. Thirdly, deploying 

more sink nodes in the network relieves the traffic congestion problem to a certain extent. Finally, 

multi-sink usage reduces the average distance from sensor nodes to sink nodes, resulting in more 

energy saving and thus extend the network lifetime [18,19]. 

In the last two decades, optimization techniques inspired by swarm intelligence have gained 

much popularity [20].  They mimic the swarms' behaviour of social insects like bees and ants, the 

behaviour of other animal societies such as fish schools, or birds flocks as well [20]. Swarm 

intelligent systems are robust, scalable, adaptable, and can efficiently solve complex problems 

through simple behaviour [21] such as the shortest path finding. Ant Colony System (ACS) is 

considered one of the most important swarm intelligence techniques that can provide approximate 

solutions to optimization problems in a reasonable amount of computation time [20]. ACS [22] has 

been inspired from the food searching behaviour of real ants which can be utilized to find the 

shortest path in WSNs. Unlike other routing approaches [23], the ant colony optimization 

meta-heuristic proposed in the literature for WSNs is based only on local information of sensor 

nodes [24].  

In particular, object tracking has become one of the most interesting applications of WSNs due to its 

wide real-life applications such as wildlife animal monitoring [25,26] and military intrusion 

detection [27]. The object tracking process consists of two critical operations. The first operation is 

monitoring, where the movement states of the mobile object is detected and tracked by the sensor 

nodes. The second operation is reporting, where nodes detecting the object report their observations 

to the sink node [28]..  
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Many object tracking researches have been dedicated to localization of objects and do not 

consider many other parameters such as reliable data reporting [29-33], nodes energy consumption, 

nodes energy balancing, and congestion control. Therefore, in this paper, we take such parameters 

collectively into consideration. We believe that considering such parameters will enhance the overall 

performance of the WSNs as well as advance the object tracking operation. Furthermore, as the size 

of WSNs increases, it becomes inefficient to collect all information with single sink. So, WSN with 

multi-sink has been considered in our proposal. To do so,  our contributions in this paper focus on: 

1) formulating the object tracking problem in large scale multi-sink WSN into 0/1 integer 

programming with previously mentioned parameters, 2) reducing energy consumption in reporting 

operation for WSN lifetime extension, 3) balancing of energy consumption among sensor nodes to 

maintain and balance of residual energy on sensor nodes as well,  4) enhancing  data reliability 

where the sensed data can reach any sink node in a more reliable way , 5) Reducing the probability 

of buffer overflow by taking into consideration the sensors buffer space to reduce the number of 

dropped messages, 6) Introducing the principle about selecting the optimal sink for data 

transmission, and 6) introducing a Swarm Intelligence as a heuristic solution based energy reduction 

and reliability as well as load balancing to forward packets to the chosen sink. 

The rest of this paper is organized as follows: The related work is discussed in section 2. 

Following this, the problem description is introduced in section 3. Then, section 4 describes the 

problem formulation. In addition, the solution approach is described in section 5. The simulation 

results are depicted in section 6. Finally, the conclusions are presented in section 7.1. Introduction 

The introduction should briefly place the study in a broad context and highlight why it is 

important. It should define the purpose of the work and its significance. The current state of the 

research field should be reviewed carefully and key publications cited. Please highlight 

controversial and diverging hypotheses when necessary. Finally, briefly mention the main aim of the 

work and highlight the principal conclusions. As far as possible, please keep the introduction 

comprehensible to scientists outside your particular field of research. References should be 

numbered in order of appearance and indicated by a numeral or numerals in square brackets, e.g., 

[1] or [2,3], or [4–6]. See the end of the document for further details on references. 

2.  Related Work 

This section focuses only on the most related work to the proposal of this paper. It starts by 

explaining the work presented in [10, 34, 36] which are the more related work to our proposed 

approach followed by the differences from our proposal.  

[10] Presented a Dynamic Traffic Aware routing algorithm (DTAR) for multi-sink WSNs. This 

algorithm can balance the network traffic by detecting congested areas along the route and 

distributing packets along multiple paths consist of idle or under-loaded nodes. Although this 

scheme [10] is presented for multi-sink WSNs, it doesn't consider the principle about selecting an 

optimal sink for data transmission which considered the first step for the selection of the optimal 

routing path. Furthermore, it is found out that some issues are not considered. First of all, the 

reliable data transmission which becomes one of the most essential issues in WSNs is not considered. 

Indeed, ignoring such issue might increase the packet loss as well as can cause more energy 

consumption due to packet retransmission as a result of unstable paths which inevitably affects the 

network efficiency. Secondly, the approach suffers from energy unbalancing. This might cause an 

energy hole problem, where the sensor nodes near the sink will deplete their energy faster than 

those further away. Therefore, this uneven use of energy leads to a significant network lifetime 

reduction. 

In NBPR (multi-sink probabilistic routing algorithm based on Naive Bayesian Classification 

model) [34], a multi-sink routing algorithm is presented. It takes the advantage of the Naive 

Bayesian Classification model to select the optimal routing in multi-sink sensor networks by means 

of probabilistic routing method. When the source node needs to transmit data to the sink, first of all, 

it select the optimal sink by means of Naive Bayesian Classification model mainly taking the 

transmission energy consumption and residual energy into account. Once the optimal sink is 
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selected, the source node selects the relay node by probability which depends on the residual energy 

in the forwarding nodes. Furthermore, the forwarding node must choose the node whose hop count 

is smaller than it in order to avoid forming a loop. 

Meanwhile, the analysis of NBPR algorithm [34] shows that some issues are not considered 

which are reflected as drawbacks. Firstly, the network reliability, as discussed above, this might 

increase the packet loss and packet retransmissions which affects the network efficiency. The second 

is the queue buffer size in which it has directly impact on network throughput and lifetime. Finally, 

node load which is an influential factor in the energy balance among sensor nodes from our point of 

view. That's to say, if more sensor nodes might choose the same node to relay their messages, more 

energy should be reserved for a node with heavier load. Therefore, taking residual energy and node 

load into consideration can balance residual energy among sensor nodes efficiently as proposed in 

[35]. Moreover, it selects the optimal sink by probability depends on the total residual energy of the 

nodes around each sink where,  a part of energy resources at these nodes is used for sending this 

kind of information to each sink. This might affect the energy efficiency of the network. 

Multiple Sink Dynamic Destination Geographic Routing (MSDDGR) algorithm has been given 

in [36]. When any node needs to send its data packet, it first selects the nearest sink as the current 

destination. Then, it selects a neighbor node closest to the chosen sink as the next hop. In addition, if 

any relay node sees that another sink is nearer to it, the current destination node will be changed to 

the new selected sink. However, MSDDGR algorithm doesn't consider some critical issues which 

regard as a drawback. The first is energy balancing, as described above; this might lead to 

unbalanced energy consumption in the network, which significantly minimize the network lifetime.  

The second issue is the network reliability which is one of the key issues in WSNs due to the high 

dynamics, limited resources, and unstable channel conditions. Thus, this might deteriorate the 

network performance as mentioned above. Finally, the packet buffer capacity of sensor nodes. As 

described above, this might increase the packet loss and packet retransmission which inevitably 

affects the network efficiency.  

The proposed approach, develops, firstly, formulates the object tracking problem in multi-sink 

WSNs as into 0/1 integer programming for optimal solution. Then, a heuristic algorithm is 

developed to construct an efficient object tracking in multi-sink WSNs. It proposes a novel protocol 

based on energy reduction, reliability, and energy balance routing in multi-sink WSNs for object 

tracking. The proposed protocol consists of two steps which are the selection of the optimal sink and 

the selection of the relay nodes. The selection probability of the optimal sink depends on the 

transmission energy consumption and residual energy as the previous work in [34]. In our model, 

the energy consumption of data transmission is represented by hop count as in [34], where the less 

hop count implies the less energy consumption at a fixed transmission range. The difference from 

the previous work in [34] is that the minimum residual energy of sensor nodes on the paths used for 

a certain time interval to route data to each sink node reflects the residual energy on the routing 

paths to that sink where, the maximum minimum residual energy means the maximum residual 

energy on the routing paths to that sink. Moreover, in the selection of the relay nodes, unlike the 

previous work in [10,34,36], we consider the end-to-end reliability of a multi-hop route based on the 

Packet Reception Rate (PRR) which is one of the most commonly used reliability metrics [37]. In our 

model, the work analyzes the reliability of the whole path from the next hop node to the chosen sink, 

and then chooses the relay node with the best PRR which results in high reliability instead of 

dropping packets. Furthermore, the proposed approach considers the buffer size as in [10] and 

unlike the previous work in [34,36] to reduce the number of dropped packets and energy 

consumption due to retransmission the same packets but the proposed approach considers the 

information at one hop only. In addition, unlike the previous work in [10,34,36], the proposed 

protocol can balance energy consumption among sensor nodes evenly as much as possible through 

new effective function between nodes' residual energy and weight. In addition, it can effectively 

alleviate buffer overflow by integrating the normalized buffer space into routing choice. 
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3. Problem Description 

Consider a multi-sink WSN deployed in a field for the purpose of object tracking. Our objective 

is to propose a data reporting model for this kind of service. To consider reliable object tracking 

taking into consideration nodes energy consumption, the energy balancing, and buffer size. The 

object tracking problem is modelled as a graph based on the nodes location in the monitored 

environment and their characteristics. The efficient object tracking in WSNs problem can be 

modelled as a simple undirected graph, G(V,L), where V is the set of sensor nodes in the network 

distributed in a two-dimensional plane and L is the set of all links (i, j) where,  Link (i, j) exists if and 

only if , where NEBi is the set of neighbours of node i. Assuming that a multi-objects moving in the 

environment, they will be detected by some sensor nodes which denoted by source nodes. The 

frequency of object movement at each source node differs according to the number of objects that are 

within the sensing range of each source node. At each source node, the information about the 

presence of an object in its sensing range should be reported to one of the sink nodes. In order to 

select the optimal sink for each source node, it should satisfies two constraints, 1) the sensor nodes 

on the routing paths to that sink should have the maximum residual energy to achieve balanced 

energy consumption, 2) low transmission energy consumption. In our model, the minimum residual 

energy of sensor nodes on all paths that used to send messages from the source nodes to a certain 

sink during a certain time interval is used to evaluate the residual energy toward that sink. The 

maximum minimum residual energy of sensor nodes toward a certain sink means the maximum 

residual energy toward that sink. In addition, hop count is used to represent the energy 

consumption of data transmission in our model where, the less hop count implies the less energy 

consumption at a fixed transmission range. Once each of the source nodes select the optimal sink, its 

information should be sent to the chosen sink through intermediate sensor nodes which acts as a 

relay nodes. The chosen path from each source node to the chosen sink should be the best path 

which satisfies some constraints including 1) low communication cost, 2) its reliability greater than 

or equal target value, 3) at the same time, sensor nodes on that path should have the maximum 

energy weight cost compared with their neighbors to balance energy among sensor nodes, and 4) as 

well, sensor nodes should have the maximum buffer space  to reduce number of lost packets and 

energy consumption due to retransmission of the same packets as a result of buffer overflow. 

 

4.  Problem Formulation for Optimal Solution 

Based on the previous modelling to the object tracking problem, the problem can be solved 

optimally. In this section, the problem is mathematically formulated using Integer Linear 

Programming (ILP); then solved by any of the selected solver [24]. This solution is used to guarantee 

the optimal solution, if any, to the previously described problem. However, due to the complexity of 

the problem and its constraints, it is expected and it is well known from the previous experiences in 

similar problems that no optimal solution could be found in some cases of the problem 

representation.  Therefore, the mathematical formulation is used to solve small-scale problems as 

well as it is designed to fully understand the problem with its major constraints.  In addition, the 

optimal solution for small-scale problems could be used to measure the quality of any given 

heuristic that might be used to solve the same problem. In fact, in the next section, the paper explains 
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a SWARM based optimization solution to the problem. This solution is used for large-scale 

problems.  

To simplify the description of the problem and its formulation, the notations used to model the 

problem are given in Table 1. 

 

Table 1. Our model notations Given Parameters 

Notation Description 

S The set of all sensor nodes that in sensing or sensing-relaying state. 

R The set of all sensor nodes that in relaying state accept sink node. 

Si The set of all sink nodes. 

L The set of all links, (i, j) ∈ L and i ≠ j.  

C The set of transmission cost C(i,j)associated with link (i, j). 

PRR The set of packet reception ratio PRR(i,j)associated with link (i, j). 

Q The target end-to end success probability.  

wq Constant value less than or equal 1.  

Ds The set of all messages corresponding to the detected objects at each source node s, 
∀𝑠 ∈ 𝑆.  

Ts Time interval 
𝑀𝑅𝐸𝑠𝑖

 The minimum residual energy toward each sink node si during a given time 

interval, ∀𝑠𝑖 ∈ 𝑆𝑖  
𝑚ℎ𝑐𝑠𝑖

𝑠  The minimum hop count from each source node s to each sink node si, ∀𝑠𝑖 ∈
𝑆𝑖 , ∀𝑠 ∈ 𝑆 

𝑑𝑖𝑠𝑖

𝑠𝑖 The Euclidean distance from node i to sink node si, i ∈ S ∪ R, si ∈ Si 

ℎ𝑐𝑖
𝑠 The number of hops from  node i and sink si, i ∈ S ∪ R 

𝑅𝐸𝑗 The residual energy of each sensor node j, j ∈ NEBi, NEBi ∈ S ∪ R 
𝑠𝑒(𝑖,𝑗) The energy required to do single hop transmission from i to j, (i, j) ∈ L.  

𝑀𝑒𝑠𝑖 The number of messages at node  i, 𝑖 ∈ 𝑆 ∪ 𝑅  
𝑤𝑗 The weight of a neighbor j, 𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅  

𝐸𝑤𝑟𝑗  The relation between the residual energy and weight for each neighbor node j, 𝑗 ∈
𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅 

pz The packet size. 
𝐵𝑟𝑗  The ratio between buffer space and packet size. 
𝑏𝑠𝑗  Buffer space at node j. 

𝑏𝑚𝑗 The number of messages that can be received by node j without buffer overflow. 
𝑁𝑅𝐸𝑗  The ratio between REj  and se(i,j) for each neighbor node j, j ∈ NEBi, NEBi ∈ S ∪ R 
𝐸𝑁𝐶𝑗  The energy consumption for each neighbor node j, j ∈ NEBi, NEBi ∈ S ∪ R 

𝑃𝑠𝑖
𝑠 The set of all candidate paths between any pair (s, si), ∀s ∈ S, ∀si ∈ Si.  

𝑃𝑅𝑅𝑃𝑠
 The set of PRR for all candidate paths between any pair (s, si),∀s ∈ S, ∀si ∈ Si.  

𝑁𝐸𝐵𝑖 The set of neighbors of  node j, 𝑗 ∈ 𝑆 ∪ 𝑅, 𝑁𝐸𝐵𝑗 ∈ 𝑆 ∪ 𝑅.  

Indicator Parameter 

𝛿𝑗
𝑝
 The indicator function which is 1 if node j is on path p and 0 otherwise. 

Decision Variables 

𝑡(𝑖,𝑗)
𝑠𝑑  1 if the source node s uses the link (i, j) to transmit message d through it to sink node 

and 0 otherwise, ∀𝑑 ∈ 𝐷𝑠 , ∀𝑠 ∈ 𝑆, and (𝑖, 𝑗) ∈ 𝐿. 

𝑏𝑠𝑖
𝑠𝑑 1 if the sink node si has the minimum load compared with the other sink nodes and 

0 otherwise, ∀𝑠 ∈ 𝑆, 𝑠𝑖 ∈ 𝑆𝑖 , and ∀𝑑 ∈ 𝐷𝑠 . 

ℎ𝑠𝑖

𝑠  1 if the sink node si has the minimum hop count compared with the other sink 

nodes and 0 otherwise, ∀𝑠 ∈ 𝑆, 𝑠𝑖 ∈ 𝑆𝑖 . 

𝑔𝑠𝑖
𝑠𝑑 1 if the source node s uses the sink node si to report its message d to it and 0 

otherwise, ∀𝑠 ∈ 𝑆, 𝑠𝑖 ∈ 𝑆𝑖 , and ∀𝑑 ∈ 𝐷𝑠 . 
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𝑧𝐾 1 if the difference between the load of sink node K and si is less than zero and 0 

otherwise, ∀𝑠𝑖 ∈ 𝑆𝑖 , 𝐾 ∈ 𝑆𝑖 − {𝑠𝑖}. 

𝑈(𝑖,𝑗)
𝑠𝑑  1 if the sensor node i uses node j to relay message d of the source node sand 0 

otherwise, ∀𝑑 ∈ 𝐷𝑠 , ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝑆 ∪ 𝑅, 𝑗 ∈ 𝑁𝐸𝐵𝑖 , and 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅 

𝑥𝑝
𝑠𝑑  1 if the source node s select the path p to send message d to sink node and 0 

otherwise, ∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃𝑠 , and ∀𝑑 ∈ 𝐷𝑠. 

𝑧𝑁 1 if the difference between 𝐸𝑤𝑟𝑗of sensor node j and𝐸𝑤𝑟𝑁of  sensor node N is less 

than zero and 0 otherwise, ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁 ∈ 𝑁𝐸𝐵𝑖 − {𝑗}, and 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅. 
𝑚𝑗  1 if the sensor node j has a maximum residual energy to weight ratio compared with 

other neighbors and 0 otherwise, ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , and 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅. 

𝑏𝑗 1 if the total number of messages that can be received by node j without buffer 

overflow greater than zero and 0 otherwise, ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , and 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅. 

𝑦𝑙 1 if the difference between the normalized buffer space of sensor node j and l is less 

than zero and 0 otherwise, ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑙 ∈ 𝑁𝐸𝐵𝑖 − {𝑗}, and 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅. 

𝑘𝑝
𝑠𝑑 1 if the selected path p for each source node s and message d has PRR greater than 

or equal to the target end-to-end success probability and 0 otherwise, ∀𝑠 ∈ 𝑆, ∀𝑑 ∈
𝐷𝑠 , and 𝑝 ∈ 𝑃𝑠 . 

Now, let’s start with the selection of the optimal sink for each source node which depends on the 

minimum residual energy of sensor nodes located in the direction to that sink in our model. When 

the message sent from any source node s to a certain sink along the path p, the minimum residual 

energy of the sensor nodes on that path is recorded at the sink node if its value is less than the 

previous one. Therefore, every a certain time interval Ts each sink node broadcast a message 

contains the minimum residual energy toward that sink to all of the sensor nodes which defined as 

follows: 

𝑀𝑅𝐸𝑠𝑖
= 𝑚𝑖𝑛{ 𝐸𝑚𝑖𝑛 𝑝𝑛

𝑠𝑖 }     𝑛 = 1,2, . . . , 𝑁                               (1) 

Where, Pn and N are the set and the number of all paths used by the source nodes to send their 

messages to sink node si during a certain time interval Ts respectively. 𝐸𝑚𝑖𝑛 𝑝𝑛

𝑠𝑖 the set of the 

minimum residual energy of the sensor nodes on all the paths Pn to sink node si during a certain 

time interval Ts.   

Due to the use of multi-hop routing technique, the information about the detected objects at each 

source node should be transmitted as messages to the chosen sink through the relay nodes. Since the 

energy resource is limited on such nodes, it is highly needed to achieve energy balanced routing. The 

node with heavy weight and low residual energy should be prevented from being selected as a next 

hop. So, the proposed algorithm considers a model in which the selection of the relay nodes depends 

on the value of a new proposed function which enables the decision making according to the 

residual energy and weight of nodes. The computation of the weight for each node j is defined by 

equation (2) as follows: 

𝑤𝑗 = {
∑ 𝑀𝑒𝑠𝑖          𝑖𝑓 𝑑𝑖𝑠𝑗 < 𝑑𝑖𝑠𝑖𝑖∈𝑁𝐸𝐵𝑗

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                 (2) 

Since the objects detected in the monitored environment distribute non-uniformly, node's weight 

can be defined as the total number of messages at its neighbour nodes which may choose it to relay 

their messages. Equation (2) means that packets are prevented from being transmitted backward to 

the neighbours with higher hop count. This strategy ensures that the packets are forwarded closer 

toward the sink and prevents forming a loop. 

In addition, the new function that combines residual energy and weight for each node j at time t 

namely node energy weight cost which defined as follows: 
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𝐸𝑤𝑟𝑗(𝑡) = {
𝑒𝑥𝑝 (

(𝑁𝑅𝐸𝑗(𝑡) − 𝑤𝑒𝑗(𝑡))
𝐼𝐸𝑗

⁄ ) ∗ (
𝑁𝑅𝐸𝑗(𝑡)

1 + (𝐼𝐸𝑗 − 𝑁𝑅𝐸𝑗(𝑡))
)          𝑖𝑓 𝑤𝑒𝑗 ≠ 0

0                                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                                                                                                   

(3) 

In event-driven WSNs such as those used in object tracking application, nodes normally operate 

under low or idle load states and suddenly become active in response to the detected or monitored 

event. As a result, a part of the network becomes overloaded and often leads to congestion.  Since 

the sensor nodes have limited memory, it is impossible to buffer a large number of packets. 

Consequently, the buffer of the relay node may start overflowing, resulting in loss of important 

packets and more energy consumption due to the retransmission of the lost packets [38-40]. In order 

to avoid congestion or overloaded nodes, the normalized buffer space is integrated into routing 

choice. The normalized buffer space is defined as the ratio between the buffer space and packet size. 

It is used to express the number of packets that can be received by every sensor node without it 

starting buffer overflowing at a certain time. The normalized buffer space of node j at time t can be 

defined as follows: 

𝑏𝑚𝑗(𝑡) = {
𝑏𝑠𝑗(𝑡)

𝑝𝑧
       𝑖𝑓 𝑏𝑠𝑗(𝑡) ≥ 𝑝𝑧

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (4)                                       

To compute the shortest path to the sink nodes from each source node s to get the solution set of 

{ℎ𝑠𝑖
𝑠 } and then the shortest path to the chosen sink si to get the solution set of {𝑥𝑝

𝑠𝑑} in order to 

minimize communication cost, the Dijkstra algorithm has been used. To fit the Dijkstra into our 

formulation, the algorithm is represented mathematically as follows [41]:  

The sensor nodes are being processed according to their order. The sensor nodes that are yet to be 

processed denoted by U, initially𝑈 ∈ 𝑆 ∪ 𝑅 . When a sensor node i is processed, the following task is 

performed: 

 𝐹(𝑗) = 𝑚𝑖𝑛{ 𝐹(𝑗), 𝐷(𝑖,𝑗) + 𝐹(𝑗)}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑈               (5) 

Where F(j) denotes the length of the shortest path from node i to node j which initially equal to 

zero for the first processed node. When the sensor node i is processed, the {F(j)} values of its 

neighbours that have not yet been processed are updated in accordance with equation (5). 

To complete the informal description of the algorithm, it is only necessary to specify the order in 

which the nodes are processed. The next node to be processed is one whose F(j) value is the smallest 

over all the unprocessed nodes as follows: 

𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛{ 𝐹(𝑗)}, 𝑗 ∈ 𝑈                                                           (6) 

Recalling that U denotes the set of unprocessed nodes, Thus after node i is processed it is 

immediately deleted from U. where, U=U - {i} 

 

The total communication cost for a graph G and object tracking tree T is defined as the sum of the 

individual contributions of all source and relay nodes in G: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠 𝑡 (𝐺, 𝑇) = ∑ ∑ ∑ 𝑡(𝑖,𝑗)
𝑑𝑠

(𝑖,𝑗)∈𝐿𝑑∈𝐷𝑠𝑠∈𝑆 𝐶(𝑖,𝑗)                (7) 

Based on these computations the problem is formulated as follows:  

The objective function: 

𝑍𝐼𝑃 = 𝑚𝑖𝑛 ∑ ∑ ∑ 𝑡(𝑖,𝑗)
𝑑𝑠

(𝑖,𝑗)∈𝐿𝑑∈𝐷𝑠𝑠∈𝑆 𝐶(𝑖,𝑗)                                          (IP) 

Subject to: 
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∑ ℎ𝑠𝑖
𝑠  = 1                         ∀𝑠 ∈ 𝑆𝑠𝑖∈𝑆𝑖

                                              (8) 

∑ 𝑧𝐾(𝑀𝑅𝐸𝑠𝑖
− 𝑀𝑅𝐸𝐾)𝐾∈𝑆𝑖−{𝑠𝑖} < 0               ∀𝑠𝑖 ∈ 𝑆𝑖                           (9) 

2 − ∑ 𝑧𝐾𝐾∈𝑆𝑖−{𝑠𝑖} = 𝑏𝑠𝑖
𝑠𝑑 + 1        ∀𝑠𝑖 ∈ 𝑆𝑖 , ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠          (10) 

∑ 𝑧𝐾𝐾∈𝑆𝑖−{𝑠𝑖} ≤ 1            ∀𝑠𝑖 ∈ 𝑆𝑖                                              (11) 

∑ 𝑏𝑠𝑖
𝑠𝑑  = 1                         ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠𝑠𝑖∈𝑆𝑖

                       (12) 

s
sd
s

Ss

sd
s

s
s

DdSsgbh
i

ii

ii




,      

                                           (13) 

∑ 𝑥𝑝
𝑠𝑑  = 1                                             ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠𝑝∈𝑃𝑠𝑖

𝑠 , 𝑠𝑖 ∈ 𝑆𝑖         (14)     

∑ 𝑈(𝑖,𝑗)
𝑠𝑑

𝑖∈𝑆∪𝑅 = 1               ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠 , 𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅       (15) 

∑ 𝑧𝑁(𝐸𝑤𝑟𝑗 − 𝐸𝑤𝑟𝑁) < 0         ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅𝑁∈𝑁𝐸𝐵𝑖−{𝑗}           (16) 

2 − ∑ 𝑧𝑁 = 𝑚𝑗 + 1               ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅𝑁∈𝑁𝐸𝐵𝑖−{𝑗}               (17) 

∑ 𝑧𝑁 ≤ 1                     ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅 𝑁∈𝑁𝐸𝐵𝑖−{𝑗}              (18) 

∑ 𝑘𝑝
𝑠𝑑𝑃𝑅𝑅𝑝 ≥ 𝑄  ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠𝑝∈𝑝𝑠𝑖

𝑠 , 𝑃𝑅𝑅𝑝 ∈ 𝑃𝑅𝑅𝑝𝑠𝑖
𝑠 , 𝑠𝑖 ∈ 𝑆𝑖          (19)  

𝑘𝑝
𝑠𝑑 + 1 ≤ 𝑥𝑝

𝑠𝑑 + 1                               ∀𝑝 ∈ 𝑃𝑠 , 𝑠 ∈ 𝑆, 𝑑 ∈ 𝐷𝑠       (20)                    

∑ 𝑦𝑙(𝑏𝑚𝑗(𝑡) − 𝑏𝑚𝑙(𝑡)) < 0         ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅𝑙∈𝑁𝐸𝐵𝑖−{𝑗}       (21)                          

 2 − ∑ 𝑦𝑙 = 𝑏𝑗 + 1               ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅𝑙∈𝑁𝐸𝐵𝑖−{𝑗}             (22)                         

∑ 𝑦𝑙 ≤ 1                                ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅 𝑙∈𝑁𝐸𝐵𝑖−{𝑗}                 (23) 

∑ ∑ 𝛿𝑗
𝑝

𝑥𝑝
𝑠𝑑𝑚𝑗𝑏𝑗𝑘𝑝

𝑠𝑑 ≤ 𝑈(𝑖,𝑗)
𝑠𝑑

𝑗∈𝑁𝐸𝐵𝑖
  ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠𝑝∈𝑃𝑠

, 𝑖 ∈ 𝑆 ∪ 𝑅, 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅    (24)                                                                              

∑ 𝑚𝑗 ≤ 1                                     𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅𝑗∈𝑁𝐸𝐵𝑖
                          (25) 

∑ 𝑏𝑗 ≤ 1                                     𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅𝑗∈𝑁𝐸𝐵𝑖
                            (26) 

∑ 𝑡(𝑖,𝑗)
𝑠𝑑 ≥ 1                                     ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠(𝑖,𝑗)∈𝐿                      (27) 

𝑧𝐾 = 0 𝑜𝑟 1        𝐾 ∈ 𝑆𝑖 − {𝑠𝑖}                                           (28) 

𝑏𝑠𝑖
𝑠𝑑 = 0 𝑜𝑟 1         ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠 , 𝑠𝑖 ∈ 𝑆𝑖                          (29) 

ℎ𝑠𝑖
𝑠 = 0 𝑜𝑟 1         ∀𝑠 ∈ 𝑆, , 𝑠𝑖 ∈ 𝑆𝑖                                                 (30) 

𝑔𝑠𝑖
𝑠𝑑 = 0 𝑜𝑟 1                        ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠, 𝑠𝑖 ∈ 𝑆𝑖                         (31) 

𝑧𝑁 = 0 𝑜𝑟 1            𝑁 ∈ 𝑁𝐸𝐵𝑖 − {𝑗}                                              (32) 

𝑥𝑝
𝑠𝑑 = 0 𝑜𝑟  1                                     ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠, 𝑝 ∈ 𝑃𝑠                  (33) 

𝑈(𝑖,𝑗)
𝑠𝑑 = 0 𝑜𝑟 1        ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝑁𝐸𝐵𝑖 , , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅, ∀𝑑 ∈ 𝐷𝑠           (34) 

𝑚𝑗 = 0 𝑜𝑟 1                           ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅                      (35) 

𝑘𝑝
𝑠𝑑 = 0 𝑜𝑟 1                         ∀𝑝 ∈ 𝑃𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠                       (36) 

𝑡(𝑖,𝑗)
𝑠𝑑 = 0 𝑜𝑟 1                          ∀𝑠 ∈ 𝑆, ∀𝑑 ∈ 𝐷𝑠 , (𝑖, 𝑗) ∈ 𝐿                    (37) 

𝑏𝑗 = 0 𝑜𝑟 1                           ∀𝑗 ∈ 𝑁𝐸𝐵𝑖 , 𝑁𝐸𝐵𝑖 ∈ 𝑆 ∪ 𝑅                        (38) 

𝑦𝑙 = 0 𝑜𝑟 1            𝑙 ∈ 𝑁𝐸𝐵𝑖 − {𝑗}                                         (39) 

 

To simplify the description of the formulation the constraints are divided into sets and each set 

is recognized by its functionalities as follows: 

 

Routing Constraints: 

The routing constraints involve constraints 8, 13, 14,15,24, 25 and 26.   

Constraint (8): It is used to guarantee that any source node s must choose only one sink node. 
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Constraint (13): Once the sink node siis selected, and it has the maximum minimum residual 

energy compared with the other sink nodes. Then the decision variable 𝒈𝒔𝒊
𝒔𝒅must be enforced to 

1. 

Constraint (14): It is used to guarantee that any source node s must choose only one path to the 

chosen sink. 

Constraint (15): To avoid cycle, the use of any node j as a relay node for the same source node 

sand message d is equal 1, except the sink node. 

Constraint (24): Once the path p is selected, and the PRR of that path is greater than or equal the 

target end-to-end success probability. As well as, the node j is on the path and has the highest 

residual energy to weight ratio compared with other neighbour nodes. In addition, the node j 

can receive the message without buffer overflow. Then the decision variable 𝑼(𝒊,𝒋)
𝒔𝒅  must be 

enforced to equal 1. 

Constraint (25-26): They are used to guarantee that any node i must choose only one node j 

from its neighbours. 

Energy Constraint: 

The energy constraints contain constraints 9, 10, 11, 12,16, 17, and 18. 

Constraint (9-12): They are used to balance energy consumption of the whole network. Any 

source node s must choose only one sink node si to report its message d to it. The chosen sink 

should have the lowest load compared with the other sink nodes. 

Constraint (16-18): They are used to maintain higher and balance residual energy on nodes. 

Any node i must choose only one node j from its neighbours which have the highest residual 

energy to weight ratio compared with other neighbour nodes. 

Reliability Constraint: 

The reliability constraints contain constraints 19and 20. 

Constraint (19-20): It used to guarantee that the selected path p for the source node s and 

message d has a PRR greater than or equal the target end-to-end success probability. 

Buffer Constraint: 

The buffer constraint contains constrains 21, 22, and 23. 

Constraint (21-23): It is used to prevent buffer overflow. Any node i must choose only one node 

j from its neighbours which has maximum buffer space as described from equation (21) to 

equation (23). 

Decision variables Constraint: 

The decision variable constraints are composed of constraints 28 through 39.  

Constraint (28-39): 

𝒕(𝒊,𝒋)
𝒔𝒅 , 𝒛𝑲, 𝒈𝒔𝒊

𝒔𝒅, 𝒃𝒔𝒊
𝒔𝒅,𝒉𝒔𝒊

𝒔 , 𝒛𝑵, 𝒙𝒑
𝒔𝒅, 𝑼(𝒊,𝒋)

𝒔𝒅 , 𝒎𝒋, 𝒃𝒋, 𝒚𝒍, and 𝒌𝒑
𝒔𝒅equal 0 or 1. 

Redundancy Constraint: 

The redundancy constraints include only constraint number 27.  

Constraint (27): For all ∑ 𝒕(𝒊,𝒋)
𝒔𝒅

(𝒊,𝒋)∈𝑳 must be greater than or equal to 1. 

5. The Proposed Solution 

This section describes the second solution approach for the reliable object tracking problem which is 

divided into two steps as described below. 

1- The selection of the optimal sink by a probability which depends on the residual energy and 

the energy consumption of data transmission. 

2- The selection of the relay nodes using swarm intelligence taking residual energy, weight, 

and buffer space of the relay nodes into account. As well as, the energy consumption and 

reliability of data transmission. 

 

5.1 Routing Scheme 
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  Once the source node detects an object, the process of selecting the optimal sink node for 

data transmission is started. The selection of the sink node is related to the sink node cost.  The sink 

having the maximum cost is to be considered as the optimal sink node. Our model takes the residual 

and hop count into account. When a message sent from any source node to a certain sink, the 

minimum residual energy of the sensor nodes on the routing path will be reported to that sink and 

then updates its residual energy information which represents the least received value at this sink. 

Such information is used to evaluate the residual energy of the sensor nodes located in the direction 

to a certain sink. That's to say, the higher residual energy means the greater sink cost. In this way, the 

energy balance factor is taken into consideration. Hop count is used to represent energy 

consumption of data transmission where, at a fixed transmission range the less hop count means the 

less energy consumption. The cost of a sink node si at the source node s is determined as follows: 

𝑃𝑟𝑠(𝑠, 𝑠𝑖) =
𝑀𝑅𝐸𝑠𝑖

𝑚ℎ𝑐𝑠𝑖
𝑠                                                           (37) 

After the source node selects which the sink the data will be sent to, it will send the data to a 1-hop 

neighbour according to the process of selecting the relay node using swarm intelligence. The 

proposed solution based swarm intelligence is composed of two phases. In the first phase, it starts 

with a set of forward ants placed in the source nodes and move through neighbour relay nodes until 

reach sink node. In this algorithm, for calculating the packet transfer probability to the next hop 

neighbour, residual energy, weight, normalized buffer space, hop count, and pheromone are 

considered. At each node i, a forward ant k selects the next hop node j, 𝑗 ∈ 𝑁𝐸𝐵𝑖randomly with a 

probability 𝑝𝑟
𝑘(𝑖, 𝑗)which determined as follows: 

𝑝𝑟
𝑘(𝑖, 𝑗) =

[𝜏𝑖𝑗(𝑡)]𝛼[𝜂𝑖𝑗(𝑡)]𝛽[𝜓𝑖𝑗(𝑡)]𝛾[𝜀𝑖𝑗(𝑡)]𝜐[𝛿𝑖𝑗(𝑡)]𝜑

∑ [𝜏𝑖𝑙(𝑡)]𝛼[𝜂𝑖𝑙(𝑡)]𝛽[𝜓𝑖𝑙(𝑡)]𝛾[𝜀𝑖𝑙(𝑡)]𝜆[𝛿𝑖𝑙(𝑡)]𝜑
𝑙∈𝑁𝐸𝐵𝑖

            (38)             

Where τij(t) is the pheromone value on the link (i,j) at the time t, ηij(t), ψij(t), εij(t), and δij(t) are the 

heuristic information of link (i,j) for node j; α, β, γ, υ, and ϕ are the weight factors that control the 

pheromone value and the heuristic information parameters respectively.  

When forward ant k reaches the chosen sink node, it is transformed into a backward ant and the 

second phase starts. The backward ant starts from the chosen sink node and moves towards its 

source node along the same path in opposite direction, depositing an increment of pheromone on 

that. 

5.1.1  Calculation of The Heuristic Information  

In order to maintain higher and balance residual energy on sensor nodes, the proposed function 

between residual energy and weight is  used as a heuristic information when selecting the next hop 

neighbour node which denoted by η
ij
. 

𝜂𝑖𝑗(𝑡) =
𝐸𝑤𝑟𝑗(𝑡)

∑ 𝐸𝑤𝑟𝑙(𝑡)𝑙∈𝑁𝐸𝐵𝑖

                                                           (39) 

According to this rule, the node with the greater value of 𝜂𝑖𝑗 will have a higher residual energy 

compared to its weight and a much better opportunity to be chosen as a next hop. 

Since energy conservation is an essential issue in WSN, selecting the nodes with minimum hop 

count is required to minimize energy consumption and conserve much more energy as possible. 

Therefore, the between neighbour node j and the sink node si in terms of hop count is used as 

heuristic information which is denoted by𝜓𝑖𝑗. 
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𝜓𝑖𝑗(𝑡) =
(ℎ𝑐

𝑖

𝑠𝑖−ℎ𝑐
𝑗

𝑠𝑖)+1

∑ (ℎ𝑐
𝑖

𝑠𝑖−ℎ𝑐
𝑗

𝑠𝑖)+1𝑙∈𝑁𝐸𝐵𝑖

                                                    (40) 

A neighbour node that has a greater value of  ψ
ij

(t)  is closer to the sink than the others and will be 

more likely to be chosen as next hop. 

In order to avoid or reduce packet loss due to buffer overflow which in turn improve the overall 

network performance, it is critical to send packets to the sensor node with more buffer space or less 

traffic load. Therefore, 𝑏𝑚𝑗(𝑡) can be used as heuristic information which denoted by 𝜀𝑖𝑗(𝑡) 

𝜀𝑖𝑗(𝑡) =
𝑏𝑚𝑗(𝑡)

1+∑ 𝑏𝑚𝑙(𝑡)𝑙∈𝑁𝐸𝐵𝑖

                          (41)                                                        

This rule enables decision making according to the buffer apace on the neighbour nodes, meaning 

that if a node has a greater value of εijthen it has a much better opportunity to be chosen as next hop. 

  Due to the dynamic behaviour of the wireless link quality over time and space, it is 

essential to use the current packet reception ratio of link (i,j), PRRij as heuristic information to 

improve the network throughput. It is denoted by 𝛿𝑖𝑗(𝑡) 

𝛿𝑖𝑗(𝑡) =
𝑃𝑅𝑅𝑖𝑗

∑ 𝑃𝑅𝑅𝑙𝑗𝑙∈𝑁𝐸𝐵𝑖

                                                             (42) 

  Where, the greater value of  δij indicates that the link (i,j)more reliable than others. Thus, 

the neighbour node j will have more chance to be chosen as next hop. 

5.1.2   Pheromone Calculation 

In this algorithm, pheromone concentration is affected by the combination between energy, path 

length, and path quality in a new effective form. This may improve network reliability, reduce 

energy consumption, and achieve more balanced transmission among the nodes. 

let's begin with the calculation of the path quality, qp, which related to the PRR as follows: 

 𝑞𝑝 = 𝑃𝑅𝑅𝑝                                                                       (43) 

Where, PRRp, represents the packet reception ratio of the path p. Due to the use of multi-hop 

routing, the PRRp can be computed by the PRR of each hop on the path p as follow: 

 𝑃𝑅𝑅𝑝 = ∏ 𝑃𝑅𝑅𝑖𝑗(𝑖,𝑗)∈𝑛𝑝
                                                           (44) 

Where, np is the set of edges on the path p (hop count). In this model, all nodes have the same fixed 

transmission range. So, the number of hops in the path p is considered as the path length, Lp as 

follow: 

 𝐿𝑝 = 𝑛𝑝                                                                            (45) 

The increasing density of pheromone on the path p is defined as follows: 

         𝛥𝜏 = ((1
𝐿𝑝

⁄ )
𝑤1

× (𝑃𝑅𝑅𝑝)
𝑤2

) ⋅ (𝐸𝑚𝑖𝑛()𝑤3 )                                (46) 

Where 𝐸𝑚𝑖𝑛is the minimum residual energy of nodes visited by ant k and the parameters w1, w2, 

and w3 determining the relative influence of the energy, path length, and path quality.   
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The sink node constructs the value of pheromone update operator,𝛥𝜏𝑖𝑗 , and sent it back as a 

backward ant to its source node along the reverse path. Whenever a node i receives a backward ant k 

coming from neighboring node j, it updates its pheromone concentration according to the following 

rule: 

𝜏𝑖𝑗(𝑡) = (1 − 𝜌)𝜏𝑖𝑗(𝑡 − 1) + 𝜌𝛥𝜏                                                  (47) 

Where, 𝜌 ∈ (0,1) is the evaporation constant that determines the evaporation rate of the pheromone 

[42]. 

6. Performance Evaluations 

The performance of the proposed approach for multi-sink WSNs is evaluated through 

comparison with sophisticated algorithms designed for multi-sink WSNs such as DTAR [10], 

NBPR[34], and MSDDGR [36]. The section starts by describing the performance metrics followed by 

simulation environment and finally simulation results. 

6.1. Performance Metric 

For a comprehensive performance evaluation, several quantitative metrics considered are 

defined below. 

Network Lifetime [43]. It is defined as the time duration from the begging of the network 

operation until the first node exhausts its battery.  

Energy Imbalance Factor (EIF) [43]. It is defined to quantify the routing protocol energy 

balancecharacteristic which defined formally as the standard variance of the residual energy of all 

nodes. 

𝐸𝐼𝐹 =
1

𝑛
√∑(𝑅𝐸𝑖 − 𝑅𝐸𝑎𝑣𝑔)2

𝑛

𝑖=1

 

Where n is the total number of sensor nodes, REi is the residual energy on node i, and REavg is 

the average residual energy of all nodes. 

Throughput Ratio (TR) [44]. This metric is defined as: 

𝑇𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑖𝑛 𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 𝑏𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒𝑠
 

Average End-to-End Delay (Seconds) [45]:  It is defined as the average time a packet takes to 

travel from source node to the sink node. This includes propagation, transmission, queuing, and 

processing delay. The processing delay can be ignored as a result of fast processing speed [46].   

6.1.1. Simulation Environment   

In this work, the sink node, and sensor nodes are stationary after being deployed in the field. 

All the later experiments are done for both homogeneous and heterogeneous node energy 

distributions on a custom Matlab simulator.  Poisson process of intensity λ packets per second is 

used to model the data traffic in the network. In addition, we choose a harsh wireless channel model, 

which includes shadowing and deep fading effects, as well as the noise [47]. The simulation 

parameters are listed in Table 4.2. 

 

Table 2 Simulation environment parameters 

Parameters values 

Node distribution Random  

Number of sensor nodes 100 

Network area 1000 m x 1000 m 

Number of source nodes 10 

Maximum number of retransmission 4 
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Packet size  64 byte 

Buffer size 128 byte 

Frequency  2400 MHz 

Transmission power 0dBm 

Maximum transmission range 200 m 

Radio data rate 250 Kbps 

Path loss exponent 4 

Shadow fading variance 4 

Noise power -153dBm 

Reference distance 1 m 

Weights (α, β, γ, υ, and ϕ) 0.016/0.154/0.3/0.05/1.1 

ρ 0.65 

6.3. Simulation Results 

In this section, a variety of experiments are conducted to evaluate the performance of the 

proposed approach for multi-sink WSNs compared with DTAR [10], NBPR [34], and MSDDGR [36] 

in terms of network lifetime, network throughput, average end-to-end delay, and energy balance for 

homogeneous and heterogeneous networks. In all later experiments, each node is assumed to have 

an initial energy of 125mJ for homogenous network, while it is between 100 and 125mJ randomly for 

heterogeneous network. The same proposed scheme for selecting the optimal sink is used with the 

DTAR algorithm in all later experiments, since it doesn't consider the principle about selecting sink 

node. 

6.3.1. Network Lifetime Evaluation for Homogenous and Heterogeneous Networks 

In this set of experiments, the performance of the proposed approach is evaluated in terms of 

network lifetime for both homogenous and heterogeneous networks compared to DTAR [10], NBPR 

[34], and MSDDGR [36]. 

Network Lifetime Evaluation with Different Number of Sink Nodes  

These experiments study the variation of the network lifetime with respect to the number of 

sink nodes for homogeneous and heterogeneous networks as shown in Figure 1 and 2 respectively. 

In these experiments, the average traffic rate λ is fixed to 5 packets per second respectively. As 

depicted in Figure 1 and 2, deploying more sink nodes prolong the network lifetime. This happens 

because, as the number of sink nodes increases, nodes have more choices among the sink nodes to 

route the data packets which reduce the number of nodes that participate in data transfer, and thus 

reduce the quick exhausting of sensor nodes energy which in turn prolong the network lifetime. 

Meanwhile, with more sink nodes in the network, the path length from a sensor node to a sink node 

is decreased and more energy can be saved. However, it is evident that the proposed algorithm 

achieves longer lifetime even while increasing the number of sink nodes as compared with the 

others. This can be justified as follow. The proposed approach can balance the energy consumption 

and traffic loads efficiently across the network. At the same time, they improve the packet delivery 

against unreliable links and buffer overflow, thus saving energy consumption due to the 

retransmission of the lost packets. In the case of MSDDGR algorithm, each sensor node depends on 

the location information of its neighbours and the location of sink nodes to forward data packets. 

However, it doesn’t consider both load balance among sink nodes and load balance among sensor 

nodes situated on the routing paths to reach sink nodes. Hence, data packets sent to an overloaded 

sink may keep using the same relay nodes and as a result depleting their energies, subsequently 

affect the network lifetime. As well as, it doesn't consider the reliable message delivery and 

congestion control mechanism for data transmission leading to a lot of lost packets and thus more 

energy consumption due to the retransmission of the lost packets. DTAR algorithm spreads traffic 

over underloaded paths to reduce congestion and buffer overflow unaware of energy consumption 
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balance and the reliability of data transmission. This easily leads to energy unbalance and more 

energy consumption due to the retransmission of the lost packets as a result of unreliable wireless 

links. The NBPR relies on the residual energy to balance loads among sink nodes and to balance 

loads among sensor nodes situated on the routing paths to reach sink nodes. However, it is not 

sufficient to achieve effective energy consumption balance across the network. In addition, it doesn't 

consider how to alleviate congestion and how to avoid unreliable wireless links, which diminish the 

network throughput resulting in more energy consumption due to the retransmission of the lost 

packets. 

 

 

Figure 1. Network lifetime vs. number of sink nodes for homogeneous network 

 

Figure 2. Network lifetime vs. number of sink nodes for heterogeneous network 

Network Lifetime Evaluation with Different Average Traffic Rate 

  These simulation experiments evaluate the performance of the proposed approach 

with respect to traffic rate λ for homogeneous and heterogeneous networks as shown in Figure 3 and 

4 respectively. In these experiments, the number of sink nodes is fixed to 2 sink nodes placed at (1000 

m, 0 m) and (1000 m, 1000 m). It can be seen from the figures, the network lifetime decreases, as the 

traffic rate increase due to two reasons. First, as the network traffic increases, the probability of 

packet collision increases leading to more packet losses and retransmission and thus causes more 

energy waste. The second reason is that the relay load of nodes increases with increasing traffic rate. 

However, the proposed approach achieves the improvement on the network lifetime as compared 

with that proposed for single sink. The reason of this improvement can be explained by the fact that 
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the multi-sink topology can balance energy consumption and effectively solve the energy hole 

problem more than single sink, which extends the network lifetime. In addition, the distance a data 

packet has to travel until reaching a sink node can be reduced by deploying multiple sink nodes in 

the network, resulting in more energy saving and longer lifetime. It can be seen also from the figures 

that the performance of the proposed scheme outperforms the DTAR, NBPR, and MSDDGR 

schemes designed for multi-sink WSNs, irrespective of the average traffic rate. This is because; the 

proposed schemes balance the energy consumption throughout the network and save energy 

consumption due to the retransmission of the lost packets effectively more than the others. 

 

Figure 3. Network lifetime vs. traffic rate λ for homogeneous network 

 

 

Figure 4. Network lifetime vs. traffic rate λ for heterogeneous network 

 

6.1.1 Network Reliability Evaluation for Homogenous and Heterogeneous network 

In this set of experiments, the performance of the proposed approach is evaluated in terms of TR 

for both homogenous and heterogeneous networks compared to the DTAR [10], NBPR [34], and 

MSDDGR [36] for homogeneous and heterogeneous networks. 

Network Throughput Evaluation with Different Number of Sink Nodes  

These experiments study the variation of the network throughput with respect to the number of 

sink nodes for homogeneous and heterogeneous networks as shown in Figure 5 and 6 respectively. 

For testing this variation, the number of sink nodes is increased from 1 to 3 in the network. The 
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average traffic rate λ is fixed to 5 packets per seconds. It can be observed that the network 

throughput increases when the number of sink nodes increases, because the average distance from 

sensor nodes to sink nodes is decreased. However, the proposed approach outperforms the other 

algorithms. This happens because the proposed approach improves the packet delivery ratio by 

selecting the more reliable paths and spreading data traffic over underloaded paths to reduce 

congestion and buffer overflow as much as possible. But, the DTAR reduces packet loss as a result of 

buffer overflow by preventing overloaded nodes from being selecting as next hop, while the packet 

losses due to the unreliable wireless links are not taken into account. The NBPR and MSDDGR 

protocols don't consider reliable message delivery and congestion control mechanism for data 

transmission. 

 

Figure 5. Network throughput vs. number of sink nodes for homogeneous network 

 

Figure 6. Network throughput vs. number of sink nodes for heterogeneous network 

Network Throughput Evaluation with Different Average Traffic Rate 

 These simulation experiments study the variation of the network lifetime with respect to the 

average traffic rate λ for homogeneous and heterogeneous networks as shown in Figure 7 and 8 

respectively. These experiments started with increasing the average traffic rate λ in a network from 3 

to 7 packets per second. The number of sink nodes is fixed to 2 sink nodes placed at (1000 m, 0 m) 

and (1000 m, 1000 m). In general, as the average traffic rate increases, the traffic load in the network 

increases. As the traffic load increases, more packets reach buffer of sensor node, leading to more 

packet losses and therefore a decrease in the network throughput. However, it can be seen from the 

figures that when the traffic rate increases, the network throughput of the proposed approaches 
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whether designed for multi-sink or single sink WSN is slightly decreased. Meanwhile, the proposed 

approach achieves further improvement in the network throughput compared with DTAR, NBPR, 

and MSDDGR algorithms even while increasing the average traffic rate in the network. The reason 

for such results is that the proposed approaches can effectively recover from congestion and buffer 

overflow as much as possible even in cases of high traffic by spreading traffic over underloaded 

paths, as well as avoid the unreliable paths as compared to DTAR, NBPR, and MSDDGR algorithms.    

 

Figure 7. Network throughput vs. traffic rate λ for homogeneous network 

 

Figure 8. Network lifetime vs. traffic rate λ for heterogeneous network 

6.3.3. Energy Balancing Evaluation for Homogenous and Heterogeneous Networks 

 This experiment is conducted to evaluate the performance of the proposed approach in terms of 

energy balance for both homogenous and heterogeneous networks compared to the DTAR [10], 

NBPR [34], and MSDDGR [36] for homogeneous and heterogeneous networks. The EIF was 

calculated during running time to find the network's balance efficiency. These simulation 

experiments are conducted in a network of 2 sink nodes placed at (1000 m, 0 m) and (100 m, 1000m). 

The average traffic rate λ is fixed to 5 packets per seconds. Figure 9and 10 present the variation of 

EIF over simulation time for homogeneous and heterogeneous networks respectively. It is clear from 

the figures that EIF increases with more running time. Indeed, in random topologies, some sink 

nodes are deployed in highly dense areas while the others are not. Since these areas are not 

necessarily overlapping, some sensor nodes are obliged to bind exclusively to certain sink nodes, 

subsequently enforcing an unbalance in the distribution of sensors among the sink nodes. 

Undoubtedly, it has a negative impact on the variance of residual energy across the network. It 
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reveals the reason behind the augmentation of the EIF with more running time. However, it is 

obvious that the EIF of the proposed scheme can balance energy consumption efficiently more than 

that of the proposed scheme for single sink. This is due to the fact that multi-sink usage can balance 

energy consumption of the whole network and relieve the energy hole problem more than single 

sink. Also, it can be seen from the figures that the EIF of the proposed approach is less than that of 

the others. This is happens because, in the case of MSDDGR scheme, there is no notion of residual 

energy distribution leading to an unbalanced energy consumption in the network. NBPR scheme 

balance the load among sink nodes and balance the load among the sensor nodes situated on the 

routes to reach sink nodes based on the residual energy. The residual energy of sensor nodes is not 

sufficient to achieve effective energy balance across the network. DTAR scheme spreads the data 

traffic away from congested areas unaware of residual energy distribution, leading to unbalanced 

energy consumption in the network. But the proposed scheme balances the load among sink nodes 

depending on the least residual energy of sensor nodes that situated on the routes toward those sink 

nodes. As well as, it balances the load among sensor nodes depending of the energy weight cost 

presented in section 4, which provides more efficient energy balance than that depending on the 

residual energy only. 

 

Figure 9. The EIF vs. simulation time for homogeneous network 

 

Figure 10. The EIF vs. simulation time for heterogeneous network 

6.3.4. Average End-to-End Delay Evaluation for Homogenous and Heterogeneous Networks 
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In this set of experiments, the performance of the proposed approach is evaluated in terms of 

end-to-end delay for both homogenous and heterogeneous networks compared to the DTAR [10], 

NBPR [34], and MSDDGR [36] algorithms. 

 

 

 

 

Average End-to-End Delay Evaluation with Different Number of Sink Nodes 

 

 These experiments study the impact of varying the number of sink nodes on the end-to-end delay 

for homogeneous and heterogeneous networks as shown in Figure 11 and 12 respectively. These 

experiments were conducted with varying the number of sink nodes from 1 to 3. As well as, the 

average traffic rate λ is fixed to 5 packets per second. As can be seen from the figures, the average 

end-to-end delay decreases with increasing the number of sink nodes, because the average distance 

from sensor nodes to sink nodes is decreased. However, it is clear from the figures that the proposed 

approach has the lowest end-to-end delay compared with the others, irrespective of the number of 

sink nodes. This can be justified as follow. The proposed scheme sends packets over the least 

congestion areas and avoids the unreliable wireless links, leading to a reduction in the network 

end-to-end delay. On the contrary, the NBPR and MSDDGR don't consider how to avoid congestion 

and unreliable data transmission, which result in an increase in the end-to-end delay due to the 

retransmission of a lot lost packets. The DTAR algorithm prevents data packets from going to 

possible congested areas, while the reliable data transmission is not taken into account, which 

increases the packet loss rate and the end-to-end delay. 

 

Figure 11. Average end-to-end delay vs. number of sink nodes for homogeneous network 
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Figure 12. Average end-to-end delay vs. number of sink nodes for heterogeneous network 

 

Average End-to-End Delay Evaluation with Different Average Traffic Rate  

 These simulation experiments study the variation of the end-to-end delay with respect to the 

average traffic rate λ for homogeneous and heterogeneous networks as shown in Figure 13 and 14 

respectively. These experiments started with increasing the average traffic rate λ in a network from 3 

to 7 packets per second with 2 sink nodes placed at (1000 m, 0 m) and (1000 m, 1000 m). The results 

show that the end-to-end delay increases with increasing the number of source nodes or the average 

traffic rate. The reason why the end-to-end delay is increased in this case is because the network 

traffic is increased with increasing the number of source nodes or the average traffic rate λ causes an 

increase in the queuing delay. It is evident that the end-to-end delays of the proposed approach 

lower than that of the proposed approach with single sink. This is due to the fact that in multi-sink 

topology, the average distance from sensor nodes to the sink nodes is decreased, which implies that 

the end-to-end delay decreases. However, the proposed approach performs a smaller end-to-end 

delay than the others. This can be justified as follow. Compared with NBPR and MSDDGR 

algorithms, the proposed approach reduces the number of dropped packets and packet 

retransmissions by avoiding the unreliable paths and the heavily congested areas or overloaded 

nodes. On the other hand, the DTAR algorithm can't avoid the packet loss and packet 

retransmissions due to unreliable wireless links, leading to increased end-to-end delay.                
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Figure 13. Average end-to-end delay vs. traffic rate λ for homogeneous network 

 

Figure 14. Average end-to-end delay vs. traffic rate λ for heterogeneous network 

 

7. Conclusions 

In this work, an efficient data reporting method for object tracking in multi-sink WSNs is proposed. In data 

reporting phase, the proposed approach not only reduces the energy consumption but also balanced the loads on 

the sink nodes and balanced the load among sensor nodes to extend the network lifetime. At the same time, the 

sensed data delivered to the sink with the highest possible reliability and minimum buffer overflow. A new 

scheme for selecting the optimal sink for data transmission is proposed. This work formulates the problem as 

0/1 integer programming problem, and then proposes swarm intelligence for solving the optimization problem. 

Experiments have been carried out to evaluate and analyze the performance of the proposed approach compared 

to the previous work such as DTAR, NBPR, and MSDDGR protocols. Simulation results showed that the 

proposed approach is robust; achieve longer lifetime, and giving lower end-to-end delay compared to the 

previous works for both homogenous and heterogeneous networks. 
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	1. Introduction
	WSNs are ad-hoc networks that have a wide variety of promising applications. A Wireless sensor network (WSN) is composed of large number of tiny, inexpensive, and battery operated sensor nodes which densely deployed over a geographical area. Such node...
	It is well known that the nodes in WSN have severe resource limitations such as energy, bandwidth, and storage resources. Energy is an extremely crucial resource because it not only determines the sensor nodes lifetime, but the network lifetime as wel...
	One of the major technical challenges for some critical applications of WSNs is to provide a reliable data transmission in dynamic and harsh environment [6-8]. In harsh environment, the dynamic nature of wireless channel conditions or unexpected node ...
	Congestion control is one of the most essential issues in WSNs [10,11]. In event-driven WSNs such as those used in object tracking application, nodes normally operate under low or idle load states and suddenly become active and transmit data packet wh...
	Many researches focus on the design of routing protocols in WSN, single sink is often chosen. However, WSNs with single sink still suffer from many problems. The main problem is that the energy consumption rate of the sensor nodes close to the sink is...
	Multi-sink topology has significant advantages over single sink. Firstly, multi-sink usage can balance the energy consumption and effectively solve the energy hole problem which will prolong the network lifetime.  Secondly, it more reliable than singl...
	In the last two decades, optimization techniques inspired by swarm intelligence have gained much popularity [20].  They mimic the swarms' behaviour of social insects like bees and ants, the behaviour of other animal societies such as fish schools, or ...
	In particular, object tracking has become one of the most interesting applications of WSNs due to its wide real-life applications such as wildlife animal monitoring [25,26] and military intrusion detection [27]. The object tracking process consists of...
	Many object tracking researches have been dedicated to localization of objects and do not consider many other parameters such as reliable data reporting [29-33], nodes energy consumption, nodes energy balancing, and congestion control. Therefore, in t...
	The rest of this paper is organized as follows: The related work is discussed in section 2. Following this, the problem description is introduced in section 3. Then, section 4 describes the problem formulation. In addition, the solution approach is de...
	2.  Related Work
	This section focuses only on the most related work to the proposal of this paper. It starts by explaining the work presented in [10, 34, 36] which are the more related work to our proposed approach followed by the differences from our proposal.
	[10] Presented a Dynamic Traffic Aware routing algorithm (DTAR) for multi-sink WSNs. This algorithm can balance the network traffic by detecting congested areas along the route and distributing packets along multiple paths consist of idle or under-loa...
	In NBPR (multi-sink probabilistic routing algorithm based on Naive Bayesian Classification model) [34], a multi-sink routing algorithm is presented. It takes the advantage of the Naive Bayesian Classification model to select the optimal routing in mul...
	Meanwhile, the analysis of NBPR algorithm [34] shows that some issues are not considered which are reflected as drawbacks. Firstly, the network reliability, as discussed above, this might increase the packet loss and packet retransmissions which affec...
	Multiple Sink Dynamic Destination Geographic Routing (MSDDGR) algorithm has been given in [36]. When any node needs to send its data packet, it first selects the nearest sink as the current destination. Then, it selects a neighbor node closest to the ...
	The proposed approach, develops, firstly, formulates the object tracking problem in multi-sink WSNs as into 0/1 integer programming for optimal solution. Then, a heuristic algorithm is developed to construct an efficient object tracking in multi-sink ...
	3. Problem Description
	4.  Problem Formulation for Optimal Solution
	Based on the previous modelling to the object tracking problem, the problem can be solved optimally. In this section, the problem is mathematically formulated using Integer Linear Programming (ILP); then solved by any of the selected solver [24]. This...
	To simplify the description of the problem and its formulation, the notations used to model the problem are given in Table 1.
	Table 1. Our model notations Given Parameters
	To simplify the description of the formulation the constraints are divided into sets and each set is recognized by its functionalities as follows:
	Routing Constraints:
	The routing constraints involve constraints 8, 13, 14,15,24, 25 and 26.
	Constraint (8): It is used to guarantee that any source node s must choose only one sink node.
	Constraint (13): Once the sink node siis selected, and it has the maximum minimum residual energy compared with the other sink nodes. Then the decision variable ,𝒈-,𝒔-𝒊.-𝒔𝒅.must be enforced to 1.
	Constraint (14): It is used to guarantee that any source node s must choose only one path to the chosen sink.
	Constraint (15): To avoid cycle, the use of any node j as a relay node for the same source node sand message d is equal 1, except the sink node.
	Constraint (24): Once the path p is selected, and the PRR of that path is greater than or equal the target end-to-end success probability. As well as, the node j is on the path and has the highest residual energy to weight ratio compared with other ne...
	Constraint (25-26): They are used to guarantee that any node i must choose only one node j from its neighbours.
	Energy Constraint:
	The energy constraints contain constraints 9, 10, 11, 12,16, 17, and 18.
	Constraint (9-12): They are used to balance energy consumption of the whole network. Any source node s must choose only one sink node si to report its message d to it. The chosen sink should have the lowest load compared with the other sink nodes.
	Constraint (16-18): They are used to maintain higher and balance residual energy on nodes. Any node i must choose only one node j from its neighbours which have the highest residual energy to weight ratio compared with other neighbour nodes.
	Reliability Constraint:
	The reliability constraints contain constraints 19and 20.
	Constraint (19-20): It used to guarantee that the selected path p for the source node s and message d has a PRR greater than or equal the target end-to-end success probability.
	Buffer Constraint:
	The buffer constraint contains constrains 21, 22, and 23.
	Constraint (21-23): It is used to prevent buffer overflow. Any node i must choose only one node j from its neighbours which has maximum buffer space as described from equation (21) to equation (23).
	Decision variables Constraint:
	The decision variable constraints are composed of constraints 28 through 39.
	Constraint (28-39):
	,𝒕-(𝒊,𝒋)-𝒔𝒅.,,𝒛-𝑲.,,𝒈-,𝒔-𝒊.-𝒔𝒅.,,𝒃-,𝒔-𝒊.-𝒔𝒅.,,𝒉-,𝒔-𝒊.-𝒔.,,𝒛-𝑵.,,𝒙-𝒑-𝒔𝒅.,,𝑼-(𝒊,𝒋)-𝒔𝒅.,,𝒎-𝒋.,,𝒃-𝒋., ,𝒚-𝒍., and ,𝒌-𝒑-𝒔𝒅.equal 0 or 1.
	Redundancy Constraint:
	The redundancy constraints include only constraint number 27.
	Constraint (27): For all ,(𝒊,𝒋)∈𝑳-,𝒕-(𝒊,𝒋)-𝒔𝒅..must be greater than or equal to 1.
	5. The Proposed Solution
	This section describes the second solution approach for the reliable object tracking problem which is divided into two steps as described below.
	1- The selection of the optimal sink by a probability which depends on the residual energy and the energy consumption of data transmission.
	2- The selection of the relay nodes using swarm intelligence taking residual energy, weight, and buffer space of the relay nodes into account. As well as, the energy consumption and reliability of data transmission.
	5.1 Routing Scheme
	Once the source node detects an object, the process of selecting the optimal sink node for data transmission is started. The selection of the sink node is related to the sink node cost.  The sink having the maximum cost is to be considered as the op...
	,𝑃-𝑟𝑠.,𝑠,,𝑠-𝑖..=,𝑀𝑅,𝐸-,𝑠-𝑖..-𝑚ℎ,𝑐-,𝑠-𝑖.-𝑠..                                                          (37)
	After the source node selects which the sink the data will be sent to, it will send the data to a 1-hop neighbour according to the process of selecting the relay node using swarm intelligence. The proposed solution based swarm intelligence is composed...
	,𝑝-𝑟-𝑘.(𝑖,𝑗)=,[,𝜏-𝑖𝑗.(𝑡),]-𝛼.[,𝜂-𝑖𝑗.(𝑡),]-𝛽.[,𝜓-𝑖𝑗.(𝑡),]-𝛾.[,𝜀-𝑖𝑗.(𝑡),]-𝜐.[,𝛿-𝑖𝑗.(𝑡),]-𝜑.-,𝑙∈𝑁𝐸,𝐵-𝑖.-[,𝜏-𝑖𝑙.(𝑡),]-𝛼.[,𝜂-𝑖𝑙.(𝑡),]-𝛽.[,𝜓-𝑖𝑙.(𝑡),]-𝛾.[,𝜀-𝑖𝑙.(𝑡),]-𝜆.[,𝛿-𝑖𝑙.(𝑡),]-𝜑...            (...
	Where τij(t) is the pheromone value on the link (i,j) at the time t, ηij(t), ψij(t), εij(t), and δij(t) are the heuristic information of link (i,j) for node j; α, β, γ, υ, and ϕ are the weight factors that control the pheromone value and the heuristic...
	When forward ant k reaches the chosen sink node, it is transformed into a backward ant and the second phase starts. The backward ant starts from the chosen sink node and moves towards its source node along the same path in opposite direction, depositi...
	5.1.1  Calculation of The Heuristic Information

	In order to maintain higher and balance residual energy on sensor nodes, the proposed function between residual energy and weight is  used as a heuristic information when selecting the next hop neighbour node which denoted by ,η-ij..
	,𝜂-𝑖𝑗.(𝑡)=,𝐸𝑤,𝑟-𝑗.(𝑡)-,𝑙∈𝑁𝐸,𝐵-𝑖.-𝐸𝑤,𝑟-𝑙.(𝑡)..                                                           (39)
	According to this rule, the node with the greater value of ,𝜂-𝑖𝑗. will have a higher residual energy compared to its weight and a much better opportunity to be chosen as a next hop.
	Since energy conservation is an essential issue in WSN, selecting the nodes with minimum hop count is required to minimize energy consumption and conserve much more energy as possible. Therefore, the between neighbour node j and the sink node si in te...
	,𝜓-𝑖𝑗.(𝑡)=,,ℎ,𝑐-𝑖-,𝑠-𝑖..−ℎ,𝑐-𝑗-,𝑠-𝑖...+1-,𝑙∈𝑁𝐸,𝐵-𝑖.-,ℎ,𝑐-𝑖-,𝑠-𝑖..−ℎ,𝑐-𝑗-,𝑠-𝑖...+1..                                                    (40)
	A neighbour node that has a greater value of  ,ψ-ij.(t)  is closer to the sink than the others and will be more likely to be chosen as next hop.
	In order to avoid or reduce packet loss due to buffer overflow which in turn improve the overall network performance, it is critical to send packets to the sensor node with more buffer space or less traffic load. Therefore, 𝑏,𝑚-𝑗.(𝑡) can be used a...
	,𝜀-𝑖𝑗.(𝑡)=,𝑏,𝑚-𝑗.(𝑡)-1+,𝑙∈𝑁𝐸,𝐵-𝑖.-𝑏,𝑚-𝑙.(𝑡)..                          (41)                                                        This rule enables decision making according to the buffer apace on the neighbour nodes, meaning that if...
	Due to the dynamic behaviour of the wireless link quality over time and space, it is essential to use the current packet reception ratio of link (i,j), PRRij as heuristic information to improve the network throughput. It is denoted by ,𝛿-𝑖𝑗.(𝑡)
	,𝛿-𝑖𝑗.(𝑡)=,𝑃𝑅,𝑅-𝑖𝑗.-,𝑙∈𝑁𝐸,𝐵-𝑖.-𝑃𝑅,𝑅-𝑙𝑗...                                                             (42)
	Where, the greater value of  ,δ-ij. indicates that the link (i,j)more reliable than others. Thus, the neighbour node j will have more chance to be chosen as next hop.
	5.1.2   Pheromone Calculation
	In this algorithm, pheromone concentration is affected by the combination between energy, path length, and path quality in a new effective form. This may improve network reliability, reduce energy consumption, and achieve more balanced transmission am...
	let's begin with the calculation of the path quality, qp, which related to the PRR as follows:
	,𝑞-𝑝.=𝑃𝑅,𝑅-𝑝.                                                                       (43)
	Where, PRRp, represents the packet reception ratio of the path p. Due to the use of multi-hop routing, the PRRp can be computed by the PRR of each hop on the path p as follow:
	𝑃𝑅,𝑅-𝑝.=,(𝑖,𝑗)∈,𝑛-𝑝.-𝑃𝑅,𝑅-𝑖𝑗..                                                           (44)
	Where, np is the set of edges on the path p (hop count). In this model, all nodes have the same fixed transmission range. So, the number of hops in the path p is considered as the path length, Lp as follow:
	,𝐿-𝑝.=,𝑛-𝑝.                                                                            (45)
	The increasing density of pheromone on the path p is defined as follows:
	𝛥𝜏=,,,,1-,𝐿-𝑝...-,𝑤-1..×,,𝑃𝑅,𝑅-𝑝..-,𝑤-2...⋅,,𝐸-𝑚𝑖𝑛.(,)-,𝑤-3...                                (46)
	Where ,𝐸-𝑚𝑖𝑛.is the minimum residual energy of nodes visited by ant k and the parameters w1, w2, and w3 determining the relative influence of the energy, path length, and path quality.
	The sink node constructs the value of pheromone update operator,𝛥,𝜏-𝑖𝑗., and sent it back as a backward ant to its source node along the reverse path. Whenever a node i receives a backward ant k coming from neighboring node j, it updates its phero...
	,𝜏-𝑖𝑗.(𝑡)=(1−𝜌),𝜏-𝑖𝑗.(𝑡−1)+𝜌𝛥𝜏                                                  (47)
	Where, 𝜌∈(0,1) is the evaporation constant that determines the evaporation rate of the pheromone [42].
	6. Performance Evaluations
	The performance of the proposed approach for multi-sink WSNs is evaluated through comparison with sophisticated algorithms designed for multi-sink WSNs such as DTAR [10], NBPR[34], and MSDDGR [36]. The section starts by describing the performance metr...
	6.1. Performance Metric
	For a comprehensive performance evaluation, several quantitative metrics considered are defined below.
	Network Lifetime [43]. It is defined as the time duration from the begging of the network operation until the first node exhausts its battery.
	Energy Imbalance Factor (EIF) [43]. It is defined to quantify the routing protocol energy balancecharacteristic which defined formally as the standard variance of the residual energy of all nodes.
	𝐸𝐼𝐹=,1-𝑛.,,𝑖=1-𝑛-(𝑅,𝐸-𝑖.−𝑅,𝐸-𝑎𝑣𝑔.,)-2...
	Where n is the total number of sensor nodes, REi is the residual energy on node i, and REavg is the average residual energy of all nodes.
	Throughput Ratio (TR) [44]. This metric is defined as:
	𝑇𝑅=,𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 ,𝑠𝑖𝑛-𝑘.-𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡 𝑏𝑦 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒𝑠.
	Average End-to-End Delay (Seconds) [45]:  It is defined as the average time a packet takes to travel from source node to the sink node. This includes propagation, transmission, queuing, and processing delay. The processing delay can be ignored as a re...
	6.1.1. Simulation Environment

	In this work, the sink node, and sensor nodes are stationary after being deployed in the field. All the later experiments are done for both homogeneous and heterogeneous node energy distributions on a custom Matlab simulator.  Poisson process of inten...
	Table 2 Simulation environment parameters
	6.3. Simulation Results
	In this section, a variety of experiments are conducted to evaluate the performance of the proposed approach for multi-sink WSNs compared with DTAR [10], NBPR [34], and MSDDGR [36] in terms of network lifetime, network throughput, average end-to-end d...
	6.3.1. Network Lifetime Evaluation for Homogenous and Heterogeneous Networks

	In this set of experiments, the performance of the proposed approach is evaluated in terms of network lifetime for both homogenous and heterogeneous networks compared to DTAR [10], NBPR [34], and MSDDGR [36].
	Network Lifetime Evaluation with Different Number of Sink Nodes

	These experiments study the variation of the network lifetime with respect to the number of sink nodes for homogeneous and heterogeneous networks as shown in Figure 1 and 2 respectively. In these experiments, the average traffic rate λ is fixed to 5 p...
	These simulation experiments evaluate the performance of the proposed approach with respect to traffic rate λ for homogeneous and heterogeneous networks as shown in Figure 3 and 4 respectively. In these experiments, the number of sink nodes is fixed...
	In this set of experiments, the performance of the proposed approach is evaluated in terms of TR for both homogenous and heterogeneous networks compared to the DTAR [10], NBPR [34], and MSDDGR [36] for homogeneous and heterogeneous networks.
	These experiments study the variation of the network throughput with respect to the number of sink nodes for homogeneous and heterogeneous networks as shown in Figure 5 and 6 respectively. For testing this variation, the number of sink nodes is increa...
	These simulation experiments study the variation of the network lifetime with respect to the average traffic rate λ for homogeneous and heterogeneous networks as shown in Figure 7 and 8 respectively. These experiments started with increasing the aver...
	This experiment is conducted to evaluate the performance of the proposed approach in terms of energy balance for both homogenous and heterogeneous networks compared to the DTAR [10], NBPR [34], and MSDDGR [36] for homogeneous and heterogeneous networ...
	6.3.4. Average End-to-End Delay Evaluation for Homogenous and Heterogeneous Networks

	In this set of experiments, the performance of the proposed approach is evaluated in terms of end-to-end delay for both homogenous and heterogeneous networks compared to the DTAR [10], NBPR [34], and MSDDGR [36] algorithms.
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