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Abstract: Given a bounded positive linear operator A on a Hilbert space ¢ we
consider the semi-Hilbertian space (7 ,( | )4), where (§ | n)4 := (A | 1 ). In this
note we study further properties of the class of (A, m)-isometric operators on a semi
Hilbertian space .7 with inner product { | )4. A Hilbert space operator T € B[] is
(A,m)-isometry for some A € B[] and integerm > 1 ([19]) if

= (o (7)rart o

0<k<m
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1. Introduction

Along this note % denotes a complex Hilbert space with inner product (.|. ). S[.#]
is the algebra of all bounded linear operators on J#, 2[.%|" is the cone of positive
(semi-definite) operators of Z[.#], i.e.,

BIAV = {T € BIA#] (TE|E) 20 V& € # )

and JB(.#")., is the subset of Z8[.#°| of all operators with closed range. For every
T e B[], /(T),Z(T) and Z(T) stand for, respectively, the null space, the range
and the closure of the range of 7. its adjoint operator by T*. In addition, if 77,75 €
A7) then T = T> means that T; — T» € Z[.#°] 7. Given a closed subspace .# of 7,
P denotes the orthogonal projection onto .. On the other hand, T stands for the
Moore-Penrose inverse of T € 28[.#.

Given A € #[»]" | the functional
(a2 x# — C, (& |n)a=(AG [n)

is a semi-inner product on .. By |.|4+ we denote the seminorm induced by ( | )4,
1

ie.||§]la = (&| & );. Observe that ||[4 = 0 if and only if & € .47(A). Then ||.| is
a norm if and only if A is an injective operator.and the seminormed space (. ||. |[4)
is complete if and only if Z7(A) is closed. Moreover, { | )4 induces a semi-norm on a
certain subspace of %8[.7], namely, on the subspace

{TeBH]/Tc>0: [[TEla=c|lla VE €}
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In such case it holds

T
ITlha = sup__ ”n&i”A: sup [ITENla = sup{ITE|la : [lEla=1}
E e Z(A) A Ela<t
E£0

= inf{c >0 :||TE|a<cllé]la, E€H} <o

Moreover

IT]la=sup{{TSIMa: S.neH, S| <1 [nll<1}
For &, € 4 , we say that § and i are A-orthogonal if (£| )4 = 0. Define
B\ (H)={T € BA): |TE|r < c|Ea forevery & € 2

[t is easy to see that SBA% () is a subspace of (7).

Definition 1.1. ([5]) For T € #(#), an operator S € #(.7) is called an A-adjoint of
T if forevery E.n € A

(TE [m)a=1(E|SN)a,
i.e.,AS =T7A: we say that T is A-self-adjoint if AT = T*A.

or which is equivalent,if S is a solution of the equation AX = T*A.

An operator acting on a Hilbert space 7 is called m-isometric for some integer m > |
if

m

prEmpm _ (])T*m_le_I _I_””_f_(_])m—l(

m

m_l)r T+(=1)"=0 (L)

m

where (k) be the binomial coefficient. A simple manipulation proves that (1.1) is
equivalent to

m
Y (—1ym (":) |T*x|> =0, forallx € (1.2)
k=0

Evidently, an isometric operator (i.e., a l-isometric operator) is m-isometric for all
integers m > 1. Indeed the class of m-isometric operators is a generalization of the class
of isometric operators and a detailed study of this class and in particular 2-isometric
operators on a Hilbert space has been the object of some intensive study, especially by
J.Agler and M. Stankus in [1, 2, 3], also by S.Richter [2 1] Shimorin [22] .S.M. Patel
[15] and B.P.Duggal in [! 3, 14]. m-Isometries are not only a natural extension of an
isometry, but they are also important in the study of Dirichlet operators and some other
classes of operators.

A generalization of m-isometries to operators on general Banach spaces has been
presented by several authors in the last years. Botelho [ 1 I]and Sid Ahmed [20] discuss
operators defined via (1.2) on (complex) Banach spaces. Bayart introduces in [#] the
notion of (m. p)-isometries on general (real or complex) Banach spaces. An operator
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T € % X] on a Banach space X is called an (m, p)-isometry if there exists an integer
m>1andap < [l,00), with

VxeXx, i(—l)"’(m)HT"’_*xHP:U (1.3)
= k

It is easy to see that, if X = .7 is a Hilbert space and p = 2, this definition coincides
with the original definition (1.1) of m-isometries. In [16] the authors took off the
restriction p > 1 and defined (m, p)-isometries for all p > 0. They studied when
an (m, p)-isometry is an (,q)-isometry for some pair (u.g). In particular, for any
positive real number p they gave an example of an operator T that is a (2, p)-isometry,
but is not a (2. g)-isometry for any g different from p. In [Y] and [10] it is proven that
the powers on an m-isometry are m-isometries and some products of m-isometries are
again m-isometries. For any T € 28(.#) we set

Bu(T):= Y ()™ (m) T, (1.4)
0<j<m J

Let A € 2[.#)" and let m be a positive integer. An operator T € B[] is said to
be an (A, m)-isometry if and only if

BAT) = Y (-1}“"*(?)?*‘%?":0 (1.5)
0<k<m
or equivalently if
) f—l)"*—*(’")||r*x||§=u (1.6)
0<k<m k

for all x € 5.

In particular, if T is a (A,2)-isometry or a (A,3)-isometry, then it must satisfy the
operator equation
T*?AT? - 2T*AT +A =0 (L7)

or

TYAT® —3TAT? 4 3T°AT —A =0 (1.8)
respectively.
Every (A, 1)-isometry or A-isometry(that is T satisfying TAT = A) is an (A,m)-
isometry. It follows from (1.7) and (1.8) that every (A,2)-isometry is a (A, 3)-isometry.
More generally it is true that an (A.m)-isometry is also an (A, n)-isometry for all n > m,
cf. [19]. The class of (A,m)-isometries has been introduced by Sid Ahmed and Saddi
[19].

In recent years, several results covering some classes of operators on a complex
Hilbert space (¢, (. |. }) are extended to (5%, (. |. }4). [0, 7, 15]
2. MAIN RESULTS

In this section, we study further properties for some (A.m)-isometric operators.

The following theorem gives a characterization of (A.3)-isometric operators.
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Theorem 2.1. Let T € (). ThenT is an (A,3)-isometric operator if and only if T
satisfies

TAT" = A+n¥(T*A.T) +n"¥(T*A.T) (2.1)

forn=0,1,2,---, where

&

L/ vy s
Wy (T7AT) = 5 (T*EAT“ —OT*AT +A) (2.2)
and

i

W (T*.AT)= %(—T*EATz—i—:iT*AT—?)A) (2.3)

Proof. We prove the if part of the theorem. Assume that T satisfies (2.1). Forn =3
we obtain

TUAT? = A+3W (T A.T)+9%(T*.A,T)

(:r“%a:r2 _T*AT +A)

t2| N2

3 |
— A+§(—T*2AT3+4T*AT—3A) +

— A—3T2AT? _3T*AT.

Hence, we have
THAT3 —3T"2AT? +3T*AT —A =0,

and so that, T is an (A, 3)-isometry.

We prove the only if part. Assume that T is an (3,A)-isometry. We prove (2.1 by
mathematical induction. For n = 1 it is true. Assume that (2.1) is true for n and prove
it for n + 1. Indeed. we have

T*H+]ATF’J+] — T* (T*HATF’J)T

— T (A 0¥ (T ,AT) +n2‘~Pz{T*x,A,T))T

— TTAT + ; ( _THAT3 44772412 — 3T*AT)
9

+% (T*3AT3 212472 + T*AT)

2 | I_3p42
_ (” . H)T*3AT3— (n®—2n)T*2AT? 4 (%)T*ﬁr.
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Now, using the fact that T is an (A, 3)-isometry we can obtained

Tl = (”‘;”) (A+3T*?AT3—3T*AT)+—(n3—2n)T*ﬂAT1
2—3n+2
—I—(ﬁ)T"AT

2

2 92 2

= () raoar? o (22 pear o (A
2 2 2
n*+n

y
(_E"Tm) (A (T A T) —I—‘Pg(T*,A,T}) + ("22_"),4

= A+(n+ D)W (T AT)+(n+1)2W(TAT).

) (A +2W(T*.A,T) +4‘¥3{T*,A,T})

+

O

Theorem 2.2. Let T € Z(#) and S € B(H#) for which TS = ST. The following
properties hold

(1) If § is an A-isometry, then
Bn(TS) = Pn(T). (2.4)
(2) If S is an (A.2)-isometry, then
BAL(TS) = (m+1)S"T*BA(T)TS — (m+ 1)T*BA(T)T + B ((T). (2.5)
(3) If S is an ((A,3)-isometry, then
a(TS) = Bro(T)+T B AT + (m4-2) (m+ DT 2B, A (1)1
+Hm+2)T B A ()T (2.6)

Proof. (1) Assume that S is an A-isometry, then we have S*AS* =A ¥V k=0,1,2,---

and it follows that "
Ba(TS) = X {—H’“*(J{Tﬂ}*mwsf

0<k<m

= Y (—pm* (?)T**S**Arks*x}

O<Zk<<m
- k() ok (st ash) T
= GE (=05 )T )
<k<m

= BA(T)
= 0.

(2) Assume that S is an (A, 2)-isometry. Then we have by using [ 19, Lemma3.4] that
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S*AS* = kS*AS+(1—k)A fork=0,1,---. A simple calculation shows that

ﬁiﬂ(“) =

Yo 1ym- ( (TS)™ A(TS)*
0<k<m+1

)9
L (e
)

Yy (- ( T**( S'AS+(1-k)A )T*
0<k<m+1

S"( y (—l]m“‘*k(m+l)T**AT*)S+ y (—1)"*-'-*(m+])(—k+I}T**‘A
1<k 1 k ¢

= 0<k<m+1
(m+1)s*( y [-1)"*-*(’;’)r**-1,4r*+1)s—(m+nr*ﬁ,gmr+ﬁ;:_l(r)
0<k<m
(m+1)S T BA(T)TS — (m+ )T *BA(T) T+ B2, ,(T)
0

(3) Assume that S is an (A.3)-isometry and TS = ST In view of Theorem 2.1 we have

that

BralTS)

E [_l}m+3—k (m-l'z) l:ST}*kA(ST\]k

0<k<m+2 k
E [_l}m+3—£' (mz_z)rjrvti (S:kAS{)TL'
0<k<m+2

(m+2\ : '
[_l}m+3—i (.??H‘ )T’d‘ (A + k¥ [S* ,A:S) +k“"‘PE(S*,‘A:S:})T‘{

0<k<m+l k
lf_l)m+2—!( m+2 (T)tkATk_i_
0<k<m+2 k
. 2 . .
E [_l}m+2—ﬁ (m;_ )k(T]asﬁtP]{St:A:S\]Ti_l_
0<k<m+2
z [—l}"’”"'(mz_z)sz**‘Pg{S*,A,S)T*}
0<k<m+2
A ()T B AT 4 (m 4 2)(m+ T2 A9 ()72
+

+(m+2)T* ﬁ:j_]r"ﬂ' 5) (T)T.

O

The proof of the following corollary is an immediate consequence of Theorem 2.2

Corollary 2.1. Let T, € B[] such that TS = ST. If T is an (A,m)-isometry and §
isan (A, k)-isometry fork =1,2,3, then TS is an (A,m~+k—1)-isometry fork=1,2,3.

Let #' @ denote the completion, endowed with a reasonable uniform crose-norm,
of the algebraic tensor product #®.7# of # with 7. Given non-zero T, S € B(#°),
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let T® S € B(# @) denote the tensor product on the Hilbert space .7 ®.#°, when
T S 1s defined as follows

(ToSE@m)| (Ea20m)) = (T&1| &2)(Sm|n2).

The operation of taking tensor products 7 & S preserves many properties of 7,5 €
2B(A), but by no means all of them. Thus, whereas 7 & S is normal if and only if T
and S are normal [ /], there exist paranormal operators T and S such that 7 & S is not
paranormal []. In [12], Duggal showed that if for non-zero TS € Z(#), T ® S is
p-hyponormal if and only if 7 and § are p-hyponormal.

Proposition 2.1. Let T,S € B[.#] and A,B € B[#]". Then the following hold:
(1) T is an (A,m)-isomerry if and only if T &1 is an (A @ B, m)-isometry.
(2) Sis an (B,m)-isometry if and only if [® S is an (A & B,m)-isometry.

Proof. The proof follows from the following identities.
A@B (7 A .
m(T@l)=PByu(T)®B

and

ACB(108) =A2BE(S).

Theorem 2.3. Let T,S € B[ and A,B € B[ . If T is an (A,m)-isometry and
S is an (B,k)-isometry for k =1,2,3. Then T @S is an (A @ B,m+k — 1)-isometry for
k=1,2,3.

Proof. Two proofs for this theorem will be given.
The First Proof. For k = [, then

rﬁ@.@B(T@S) = E (_])m_j(’?;:)(Tr‘gs)*jm@B)(T@S).f
0<j<m J
- ogg_im(_ o ( .f) (TVAT) & (SVBY)
) Oiérn(_])m_!(j)(T*JAT*)@B
= Bn(1)eB

= 0.
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For k = 2. We have

BAB(Tws) =

For k = 3 we have

8 of 10

(—1)”““—?'(‘*”{r ]) (T@S)" (A2 B)(T @5)’

0<j<m+1 J
Y (=1 (”_") (TAT7) @ (5*/BS)
0<j<m /
y (—1)’”“'("_?) (1%iAT!) 2 B
0<j<m J
1 o
0< j<m+1 J
0<j<m+1 J
- L (—U’”“‘f(’”*.1).fT*fAT-f®B
0<j<m+1 J
. | o
4+ Z (_1)m+1—1(m—|__ )_,-‘T”AT-"@B
0<j<m+l J

(m+1)Ba(T)@S*BS— (m+1)BMT)Y2B+B (T)2B
0.

Bpi5 (T ®S)
— Y (—aym (mJ.r 2) (795)" (A2 B)(Tes)

0<j<m+2 /
_ oy 2= (M2 ki o (@4 R
= Y (-1 - (TYAT) @ (SYBSY)

0<j<m+2 J
- _pymt2—j ”?+2 ] 7Y o . - .2 %
= Y (-1 T (TYATT) @ (B+ j¥1 (ST, B,S) 4 j"Wa(S™, B,ST))

0<j<m+2 J

. 2 . .

= Z (_ l)m+2—_f (”H.' ") ((T”AT"’ @B

0<j<m+2 J

+ ) (=M (m N 2) J((THATT) @ W (5*,B,S)

0<j<m+2 .

+ Y (—ym (’”Tz),ﬂ((T*’HT”')wz(S*?B,.s)
J

0<j<m+2

= Bua(T)@B+T B (T)T @W1(S*,B,S) + (m+2)T*Bpp (T)T @Wa(S*. B.S)

+(m+2)(m+

= 0.

DT*2BA(T)T? @ Wy (5", B,S)
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3. Conclusions

This concludes the first proof.
The Second Proof. By observing that

ToS=(Tel)(Ies)=(1=28)(T=I).
Since T is an (A,m)-isometry and S is an (B.k)-isometry for k = 1,2,3, it follows in
view of Proposition 2.1 that 7 & [ is an (A® B,m) and f @ S is an (A ® B, k)-isometry
fork =1.2.3. By applying Theorem 2.2, we deduce that T @ Sisan (A @B, m+k—1)-
isometry.

Theorem 2.4. Let T.5 € B[ | and A.B € B[ |". If T is an (A, m)-isometry and S
is an (B,n)-isometry, then T & S is an (A © B, p)-isometry, where p — max{m.n}.

Proof.

Bretres) = ¥ f—l}P‘*(f) (Tes)*(AeB)(Tes)
=k<p
= ¥ f—l}f"*(’:) (T*kAT*%:S”*BS*)
O0<k<p
_ —1)pk (P) T**‘AT*‘) ® —1)Pk ("’)S**‘BS")
By (T) & By (S)
0.
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